日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).
(1)設(shè)是函數(shù)的導(dǎo)函數(shù),求函數(shù)在區(qū)間上的最小值;
(2)若,函數(shù)在區(qū)間內(nèi)有零點(diǎn),求的取值范圍。

(1)當(dāng)時(shí),g(x)在[0,1]上的最小值是1-b;當(dāng)時(shí),g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b;當(dāng)時(shí),g(x)在[0,1]上的最小值是e-2a-b.(2)(e-2,1).

解析試題分析:(1)先求出的導(dǎo)函數(shù)即為的解析式,再求出的導(dǎo)函數(shù),研究的值在[0,1]上的正負(fù)變化情況,得出的單調(diào)性,根據(jù)單調(diào)性求出在[0,1]上的最小值,因?qū)?shù)函數(shù)參數(shù),故需要分類討論;(2)設(shè)函數(shù)在區(qū)間內(nèi)有零點(diǎn),利用=0,判定出在[0,1]間的單調(diào)性,從而得出在[0,1]間的正負(fù)變化情況,得出在[0,1]上零點(diǎn)的個(gè)數(shù),結(jié)合(1)的結(jié)論,得出在零點(diǎn)所在區(qū)間的端點(diǎn)的正負(fù),列出關(guān)于的不等式,求出的范圍.
試題解析:(1)由,有
所以
因此,當(dāng)x∈[0,1]時(shí),
當(dāng)時(shí),,所以g(x)在[0,1]上單調(diào)遞增
因此g(x)在[0,1]上的最小值是g(0)=1-b
當(dāng)時(shí),,所以g(x)在[0,1]上單調(diào)遞減
因此g(x)在[0,1]上的最小值是g(1)=e-2a-b
當(dāng)時(shí),令g'(x)=0,得x=ln(2a)∈(0,1)
所以函數(shù)g(x)在區(qū)間[0,ln(2a)]上單調(diào)遞減,在區(qū)間[ln(2a),1]上單調(diào)遞增
于是,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b
綜上所述,當(dāng)時(shí),g(x)在[0,1]上的最小值是1-b;
當(dāng)時(shí),g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b;
當(dāng)時(shí),g(x)在[0,1]上的最小值是e-2a-b.
(2)設(shè)x0為f(x)在區(qū)間(0,1)內(nèi)的一個(gè)零點(diǎn),則由f(0)=f(x0)=0可知
f(x)在區(qū)間(0,x0)上不可能單調(diào)遞增,也不可能單調(diào)遞減,
則g(x)不可能恒為正,也不可能恒為負(fù).
故g(x)在區(qū)間(0,x0)內(nèi)存在零點(diǎn),
同理,g(x)在區(qū)間(x0,1)內(nèi)存在零點(diǎn)
所以,g(x)在區(qū)間(0,1)內(nèi)至少有兩個(gè)零點(diǎn)
由(1)可知,當(dāng)時(shí),g(x)在[0,1]上單調(diào)遞增,故g(x)在(0,1)內(nèi)至多有一個(gè)零點(diǎn),
當(dāng)時(shí),g(x)在[0,1]上單調(diào)遞減,故g(x)在(0,1)內(nèi)至多有一個(gè)零點(diǎn),
所以,
此時(shí),g(x)在區(qū)間[0,ln(2a)]上單調(diào)遞減,在[ln(2a),1]上單調(diào)遞增
因此,x1∈(0,ln(2a)),x2∈(ln(2a),1),必有
g(0)=1-b>0,g(1)=e-2a-b>0
由f(1)=0有a+b=e-1<2有
g(0)=1-b=a-e+2>0,g(1)=e-2a-b=1-a>0
解得e-2<a<1
當(dāng)e-2<a<1時(shí),g(x)在區(qū)間[0,1]內(nèi)有最小值g(ln(2a)),
若g(ln(2a))≥0,則g(x)≥0(x∈[0,1])
從而f(x)在區(qū)間[0,1]上單調(diào)遞增,這與f(0)=f(1)=0矛盾,所以g(ln(2a))<0
又g(0)=a-e-2>0,g(1)=1-a>0
故此時(shí)g(x)在(0,ln(2a))和(ln(2a),1)內(nèi)各有一個(gè)零點(diǎn)x1和x2
由此可知,f(x)在[0,x1]上單調(diào)遞增,在[x1,x2]上單調(diào)遞減,在[x2,1]上單調(diào)遞增.
所以f(x1)>f(0)=0,f(x2)<f(0)=0
故f(x)在(x1,x2)內(nèi)有零點(diǎn)
綜上所述,a的取值范圍是(e-2,1).
考點(diǎn):導(dǎo)數(shù)的運(yùn)算,導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用,函數(shù)的零點(diǎn),推理論證能力,運(yùn)算求解能力,創(chuàng)新意識(shí),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

函數(shù)f(x)=ex+e-x在(0,+∞)上的單調(diào)性是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(Ⅰ)若,是否存在k和m,使得 ,若存在,求出k和m的值,若不存在,說明理由
(Ⅱ)設(shè) 有兩個(gè)零點(diǎn) ,且 成等差數(shù)列, 是 G (x)的導(dǎo)函數(shù),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)f(x)=2x3+ax2+bx+1的導(dǎo)數(shù)為f′(x),若函數(shù)y=f′(x)的圖象關(guān)于直線x=-對(duì)稱,且f′(1)=0.
(1)求實(shí)數(shù)a,b的值;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) .
(1)求在點(diǎn)處的切線方程;
(2)證明: 曲線與曲線有唯一公共點(diǎn);
(3)設(shè),比較的大小, 并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)
(1)a=0時(shí),求f(x)最小值;
(2)若f(x)在是單調(diào)減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)內(nèi)有極值.
(1)求實(shí)數(shù)的取值范圍;
(2)若求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x3+x2+ax+b,g(x)=x3+x2+ 1nx+b,(a,b為常數(shù)).
(1)若g(x)在x=l處的切線方程為y=kx-5(k為常數(shù)),求b的值;
(2)設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f’(x),若存在唯一的實(shí)數(shù)x0,使得f(x0)=x0與f′(x0)=0同時(shí)成立,求實(shí)數(shù)b的取值范圍;
(3)令F(x)=f(x)-g(x),若函數(shù)F(x)存在極值,且所有極值之和大于5+1n2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè) 圓軸正半軸的交點(diǎn)為,與曲線的交點(diǎn)為,直線軸的交點(diǎn)為
(1)用表示
(2)若數(shù)列滿足 
(1)求常數(shù)的值,使得數(shù)列成等比數(shù)列;
(2)比較的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 欧美日韩成人在线视频 | 四虎成人精品永久免费av九九 | 日韩欧美一区二区视频 | 亚洲国产高清在线 | 国产成人啪午夜精品网站男同 | 亚洲国产高清在线 | 欧美日韩国产在线观看 | 黄色a在线观看 | 成人免费网站视频 | 精品欧美乱码久久久久久 | 欧美精品久久久久久久亚洲调教 | 亚洲第一精品在线 | 日韩av一区二区三区在线 | 久久人人爽人人爽 | 久久久久久久久久国产 | 欧美色图第一页 | 中文字幕一区二区三区日韩精品 | 久久久天堂 | 久久久久国产一级毛片 | 50人群体交乱视频 | 午夜一级 | 最新中文字幕在线 | 国产成人啪午夜精品网站男同 | 我爱avav色aⅴ爱avav | 久草青青| 日韩精品免费看 | 亚洲国产精品久久久男人的天堂 | 亚洲国产精品一区二区久久 | 亚洲三级在线播放 | 三级网站在线 | 欧美精品免费在线 | 欧美一区二区三区四区视频 | 青青草久 | 国产情品 | 亚洲人成一区 | 欧美一区 | 亚洲视频在线网站 | 日韩高清在线一区 | 一级做a毛片 | 人人干在线视频 | 北条麻妃国产九九九精品小说 |