日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
函數f(x)在(-∞,+∞)上是奇函數,當x∈(-∞,0]時,f(x)=2x(x-1),則f(x)=
2x(x-1)(x≤0)
-2x(x+1)(x>0)
2x(x-1)(x≤0)
-2x(x+1)(x>0)
分析:要求函數f(x)的解析式,僅求出x<0的解析式即可,根據x<0與x>0之間的關系將未知區間轉化到已知區間上,再利用函數的奇偶性求出x<0的解析式.
解答:解:當x>0時,-x<0
   因為x∈(-∞,0]時f(x)=2x(x-1),
   所以f(-x)=-2x(-x-1),
   因為f(x)是奇函數,所以f(-x)=-f(x),
   所以x>0時,f(x)=-f(-x)=2x(-x-1)=-2x(x+1).
   所以f(x)的解析式為f(x)=
2x(x-1),x≤0
-2x(x+1),x>0

故答案為f(x)=
2x(x-1),x≤0
-2x(x+1),x>0
點評:本題主要考察函數奇偶性在求解析式中的應用,屬中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=x3+ax2+bx+c的圖象如圖,直線y=0在原點處與函數圖象相切,且此切線與函數圖象所圍成的區域(陰影)面積為
274

(1)求f(x)的解析式
(2)若常數m>0,求函數f(x)在區間[-m,m]上的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

下列判斷正確的是
(把正確的序號都填上).
①函數y=|x-1|與y=
x-1,x>1
1-x,x<1
是同一函數;
②若函數f(x)在區間(-∞,0)上遞增,在區間[0,+∞)上也遞增,則函數f(x)必在R上遞增;
③對定義在R上的函數f(x),若f(2)≠f(-2),則函數f(x)必不是偶函數;
④函數f(x)=
1
x
在(-∞,0)∪(0,+∞)上單調遞減;
⑤若x1是函數f(x)的零點,且m<x1<n,那么f(m)•f(n)<0.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
1+a•2x2x+b
,(a≠0)是奇函數,并且函數f(x)的圖象經過點(1,3).
(1)求實數a,b的值;
(2)求函數f(x)的值域;
(3)證明函數f(x)在(0,+∞)上單調遞減,并寫出f(x)的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)在區間[a,b]上為減函數,則f(x)在[a,b]上( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2014•達州一模)已知二次函數h(x)=ax2+bx+c(其中c<3),其導函數y=h′(x)的圖象如圖,f(x)=6lnx+h(x).
(I)求函數f(x)在x=3處的切線斜率;
(Ⅱ)若函數f(x)在區間(m,m+
12
)上是單調函數,求實數m的取值范圍;
(Ⅲ)若對任意k∈[-1,1],函數y=kx,x∈(0,6]的圖象總在函數y=f(x)圖象的上方,求c的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美| 羞羞视频网站在线观看 | av影院在线 | 国产精品美女视频免费观看软件 | 欧美精品久久久久久久久老牛影院 | 欧美黄视频| 亚洲欧美一区二区三区在线 | 一本大道综合伊人精品热热 | 欧洲成人午夜免费大片 | 中文字幕成人 | 一区二区亚洲 | 手机看片国产精品 | 北条麻妃一区二区三区在线观看 | 久久精品国产99久久久 | 国产精品久久一区 | 久久一区二区三区精品 | 国产精品一区久久久久 | 国产精品久久久久久久久免费 | 妞干网视频 | 国产探花 | 欧美亚洲国产一区 | 日韩高清一区二区 | 国产二区视频 | 久久精品1 | 久久精品欧美 | 久久久久久亚洲精品 | 欧美国产精品一区二区 | 成人av免费观看 | 日韩中文一区二区 | 欧美日一区二区 | 91麻豆精品国产91久久久更新时间 | 国产精品成人网 | 午夜免费视频观看 | 伊人久操 | 欧美一区二区三区爽大粗免费 | 欧美一级乱黄 | 国产精品自拍99 | 操碰97 | 免费av电影网站 | 日韩在线视频观看 | 91资源在线 |