已知函數(shù)(
,
)的圖象恒過定點
,橢圓
:
(
)的左,右焦點分別為
,
,直線
經(jīng)過點
且與⊙
:
相切.
(1)求直線的方程;
(2)若直線經(jīng)過點
并與橢圓
在
軸上方的交點為
,且
,求
內(nèi)切圓的方程.
(1),或
(2)
解析試題分析:(Ⅰ)易知定點,⊙
的圓心為
,半徑
.
①當軸時,
的方程為
,易知
和⊙
相切.
②當與
軸不垂直時,設(shè)
的方程為
,即
,
圓心到
的距離為
. 由
和⊙
相切,得
,解得
.
于是的方程為
.綜上,得直線
的方程為
,或
.
(Ⅱ)設(shè),
,則由
,得
.
又由直線的斜率為
,得
,
.
于是.
有,
是等腰三角形,點
是橢圓的上頂點.易知
.
于是內(nèi)切圓的圓心
在線段
上.設(shè)
,內(nèi)切圓半徑為
.則
,
由點到直線
的距離
,解得
.
故內(nèi)切圓的方程為
.
考點:直線與橢圓的位置關(guān)系
點評:本題考查橢圓的標準方程,考查橢圓的定義,考查直線與橢圓的位置關(guān)系,考查韋達定理的運用,考查學生的計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
已知焦距為的雙曲線的焦點在x軸上,且過點P
.
(Ⅰ)求該雙曲線方程 ;
(Ⅱ)若直線m經(jīng)過該雙曲線的右焦點且斜率為1,求直線m被雙曲線截得的弦長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知,
,圓
,一動圓在
軸右側(cè)與
軸相切,同時與圓
相外切,此動圓的圓心軌跡為曲線C,曲線E是以
,
為焦點的橢圓。
(1)求曲線C的方程;
(2)設(shè)曲線C與曲線E相交于第一象限點P,且,求曲線E的標準方程;
(3)在(1)、(2)的條件下,直線與橢圓E相交于A,B兩點,若AB的中點M在曲線C上,求直線
的斜率
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
極坐標系與直角坐標系有相同的長度單位,以原點
為極點,以
正半軸為極軸,已知曲線
的極坐標方程為
,曲線
的參數(shù)方程是
(
為參數(shù),
,射線
與曲線
交于極點
外的三點
(Ⅰ)求證:;
(Ⅱ)當時,
兩點在曲線
上,求
與
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知曲線的極坐標方程是
,以極點為原點,極軸為
軸正方向建立平面直角坐標系,直線的參數(shù)方程是:
(為參數(shù)).
(Ⅰ)求曲線的直角坐標方程;
(Ⅱ)設(shè)直線與曲線交于
,
兩點,點
的直角坐標為
,若
,求直線的普通方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,橢圓的離心率為
,
軸被曲線
截得的線段長等于
的短軸長。
與
軸的交點為
,過坐標原點
的直線
與
相交于點
,直線
分別與
相交于點
。
(1)求、
的方程;
(2)求證:。
(3)記的面積分別為
,若
,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系中,動點
到兩點
,
的距離之和等于
,設(shè)點
的軌跡為曲線
,直線
過點
且與曲線
交于
,
兩點.
(1)求曲線的軌跡方程;
(2)是否存在△面積的最大值,若存在,求出△
的面積;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,橢圓的右焦點
與拋物線
的焦點重合,過
作與
軸垂直的直線與橢圓交于
,而與拋物線交于
兩點,且
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過的直線與橢圓
相交于兩點
和
,
設(shè)為橢圓
上一點,且滿足
(
為坐標原點),求實數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com