【題目】為大力提倡“厲行節約,反對浪費”,某市通過隨機調查100名性別不同的居民是否做到“光盤”行動,得到如下列聯表:
| 做不到“光盤”行動 | 做到“光盤”行動 |
男 | 45 | 10 |
女 | 30 | 15 |
經計算. 附表:
參照附表,得到的正確結論是( )
A.在犯錯誤的概率不超過的前提下,認為“該市居民能否做到
光盤
行動與性別有關”
的前提下,認為“該市居民能否做到
光盤
行動與性別無關”
C.有以上的把握認為“該市居民能否做到
光盤
行動與性別有關”
D.有以上的把握認為“該市居民能否做到
光盤
行動與性別無關”
科目:高中數學 來源: 題型:
【題目】隨著新高考改革的不斷深入,高中學生生涯規劃越來越受到社會的關注.一些高中已經開始嘗試開設學生生涯規劃選修課程,并取得了一定的成果.下表為某高中為了調查學生成績與選修生涯規劃課程的關系,隨機抽取50名學生的統計數據.
成績優秀 | 成績不夠優秀 | 總計 | |
選修生涯規劃課 | 15 | 10 | 25 |
不選修生涯規劃課 | 6 | 19 | 25 |
總計 | 21 | 29 | 50 |
(Ⅰ)根據列聯表運用獨立性檢驗的思想方法能否有的把握認為“學生的成績是否優秀與選修生涯規劃課有關”,并說明理由;
(Ⅱ)如果從全校選修生涯規劃課的學生中隨機地抽取3名學生,求抽到成績不夠優秀的學生人數的分布列和數學期望(將頻率當作概率計算).
參考附表:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
參考公式,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】瑞士著名數學家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線上.這條直線被后人稱為三角形的“歐拉線”.在平面直角坐標系中作△ABC,AB=AC=4,點B(-1,3),點C(4,-2),且其“歐拉線”與圓M:相切,則下列結論正確的是( )
A.圓M上點到直線的最小距離為2
B.圓M上點到直線的最大距離為3
C.若點(x,y)在圓M上,則的最小值是
D.圓與圓M有公共點,則a的取值范圍是
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場經銷某商品,顧客可采用一次性付款或分期付款購買.根據以往資料統計,顧客采用一次性付款的概率是經銷一件該商品,若顧客采用一次性付款,商場獲得利潤200元
若顧客采用分期付款,商場獲得利潤250元.
(1)求3位購買該商品的顧客中至少有1位采用一次性付款的概率
(2)求3位顧客每人購買1件該商品,商場獲得利潤不超過650元的概率
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】利用獨立性檢驗的方法調查高中生性別與愛好某項運動是否有關,通過隨機調查200名高中生是否愛好某項運動,利用列聯表,由計算可得
,參照下表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5,024 | 6.635 | 7.879 | 10.828 |
得到的正確結論是( )
A. 有99%以上的把握認為“愛好該項運動與性別無關”
B. 有99%以上的把握認為“愛好該項運動與性別有關”
C. 在犯錯誤的概率不超過0.5%的前提下,認為“愛好該項運動與性別有關”
D. 在犯錯誤的概率不超過0.5%的前提下,認為“愛好該項運動與性別無關”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以下幾個命題中:
①線性回歸直線方程恒過樣本中心
;
②用相關指數可以刻畫回歸的效果,值越小說明模型的擬合效果越好;
③隨機誤差是引起預報值和真實值
之間存在誤差的原因之一,其大小取決于隨機誤差的方差;
④在含有一個解釋變量的線性模型中,相關指數等于相關系數
的平方.
其中真命題為 _________
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com