日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)為二次函數,不等式f(x)+2<0的解集為(-1,
1
3
)
,且對任意的a,β∈R,恒有f(sinα)≤0,f(2+cosβ)≥0.
(1)求f(x)的解析式;
(2)若數列{an}滿足a1=1,3an+1=1-
1
f(an+1)-f(an)-
3
2
(n∈N*)
,求數列{an}的通項公式;
(3)設bn=
1
an
,在(2)的條件下,若數列{bn}的前n項和為Sn,求數列{Sn•cos(bnπ)}的前n項和Tn
分析:(1)由不等式的解集設出f(x)+2的兩根式,對角α,β取特值后得到f(1)=1,由此可取函數f(x)的解析式;
(2)求出f(an+1),f(an),代入已知的等式中化簡得到數列{
1
an
}為等差數列,求出數列{
1
an
}的通項公式后可求數列{an}的通項公式;
(3)由bn=
1
an
,求出cos(bnπ),然后分n為偶數和奇數討論求解數列{Sn•cos(bnπ)}的前n項和Tn
解答:解:(1)設f(x)+2=a(x+1)(x-
1
3
)(a>0)
,即f(x)=ax2+
2a
3
x-
a
3
-2

α=
π
2
,β=π
,代入f(sinα)≤0,f(2+cosβ)≥0,則f(1)≤0,f(1)≥0同時成立,
故f(1)=0,解得a=
3
2
,故f(x)=
3
2
x2+x-
5
2

(2)∵f(an+1)-f(an)=
3
2
(an+1)2+(an+1)-
3
2
-(
3
2
an2+an-
3
2
)
=3an+
5
2

∴3an+1=1-
1
f(an+1)-f(an)-
3
2
=1-
1
3an+1
=
3an
3an+1

1
an+1
=
1
an
+3
.故數列{
1
an
}為等差數列.
1
a1
=1
,∴
1
an
=3n-2
an=
1
3n-2

(3)∵bn=3n-2,∴cos(bnπ)=cos(3n-2)π=
-1  n=2k-1
1    n=2k
k∈N*

Sn•cos(bnπ)=(-1)nSn,∴Tn=-S1+S2-S3+S4-…+(-1)nSn
①當n為偶數時,Tn=(-S1+S2)+(-S3+S4)+…+(-Sn-1+Sn
=b2+b4+…+bn=
3n2+2n
4

②當n為奇數時,
Tn=Tn-1-Sn=
3(n-1)2+2(n-1)
4
-
n(1+3n-2)
2
=
-3n2-2n+1
4

綜上,Tn=
-3n2-2n+1
4
(n為奇數)
3n2+2n
4
(n為偶數)
點評:本題考查了一元二次不等式的解法,考查了數列的函數特性,考查了數列的遞推式及數列的和,考查了分類討論的數學思想方法,考查了學生綜合處理和解決問題的能力,是有一定難度題目.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知y=f(x)為二次函數,若y=f(x)在x=2處取得最小值-4,且y=f(x)的圖象經過原點,
(1)求f(x)的表達式;
(2)求函數y=f(log
1
2
x)
在區間[
1
8
,2]
上的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)是二次函數,不等式f(x)≥0的解集為{x|-2≤x≤3},且f(x)在區間[-1,1]上的最小值是4.
(Ⅰ)求f(x)的解析式;
(Ⅱ)設g(x)=x+5-f(x),若對任意的x∈(-∞,-
3
4
]
g(
x
m
)-g(x-1)≤4[m2g(x)+g(m)]
均成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在(0,+∞)上的函數f(x),如果對任意x∈(0,+∞),恒有f(kx)=kf(x)(k≥2,k∈N*)成立,則稱f(x)為k階縮放函數.
(1)已知函數f(x)為二階縮放函數,且當x∈(1,2]時,f(x)=1+log
1
2
x
,求f(2
2
)
的值;
(2)已知函數f(x)為二階縮放函數,且當x∈(1,2]時,f(x)=
2x-x2
,求證:函數y=f(x)-x在(1,8)上無零點;
(3)已知函數f(x)為k階縮放函數,且當x∈(1,k]時,f(x)的取值范圍是[0,1),求f(x)在(0,kn+1](n∈N)上的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2008-2009學年江蘇省淮安市高一(下)期末數學試卷(解析版) 題型:解答題

已知函數f(x)為二次函數,不等式f(x)+2<0的解集為,且對任意的a,β∈R,恒有f(sinα)≤0,f(2+cosβ)≥0.
(1)求f(x)的解析式;
(2)若數列{an}滿足,求數列{an}的通項公式;
(3)設,在(2)的條件下,若數列{bn}的前n項和為Sn,求數列{Sn•cos(bnπ)}的前n項和Tn

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 成av人片在线观看www | 国产区视频在线观看 | 久久国产欧美日韩精品 | 青青成人在线 | 91在线免费看 | www.日韩精品.com | 色橹橹欧美在线观看视频高清 | 黄色天堂在线观看 | 久久精品99 | 日韩一区二区三区四区五区六区 | 一区二区三区影院 | 亚洲精品在线免费 | 日韩中文字 | www四虎com| 国产一级黄片毛片 | 国产成人免费视频 | 综合久久久久 | 最新国产精品精品视频 | 91精彩刺激对白露脸偷拍 | 精品一二三区在线观看 | 日韩亚洲一区二区 | 一区二区三区影院 | 精品不卡 | 欧美一区国产 | 久久夫妻网 | 亚洲免费一区二区 | 日韩亚洲精品视频 | 色婷婷综合久久久久中文一区二区 | 久久99久久99精品 | 日韩国产在线 | 男女视频网站 | 久热精品视频在线播放 | 国产精品视频一区二区三区四蜜臂 | 嫩草视频在线观看免费 | 男人的天堂久久 | www.色综合 | 久一在线 | 久久久久久久久久久成人 | 欧美激情一区二区 | 国产野精品久久久久久久不卡 | www国产一区 |