日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知A、B、C為△ABC的三內角,且其對邊分別a、b、c,若cosBcosC=sinBsinC+
1
2

(Ⅰ)求A;
(Ⅱ)若c<b,a=
21
S△ABC=
3
,求b,c.
分析:(Ⅰ)由 cosBcosC=sinBsinC+
1
2
,可得cos(B+C)=
1
2
,求得B+C=
π
3
,可得A的值.
(Ⅱ)三角形的面積為
1
2
bc•sinA
=
3
,可得bc=4.再由余弦定理可得可得 b2+c2+bc=21,由此解得 b和c的值.
解答:解:(Ⅰ)已知A、B、C為△ABC的三內角,且其對邊分別a、b、c,由 cosBcosC=sinBsinC+
1
2

可得cos(B+C)=
1
2
,∴B+C=
π
3
,A=
3

(Ⅱ)若c<b,a=
21
S△ABC=
3
=
1
2
bc•sinA
,可得bc=4.再由a2=21=b2+c2-2bc•cosA,
可得 b2+c2+bc=21,解得 b=4,c=1.
點評:本題主要考查兩角和的余弦公式、余弦定理的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知a、b、c為直線,α、β、γ為平面,則下列命題中正確的是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)已知a,b,c為兩兩不相等的實數,求證:a2+b2+c2>ab+bc+ca;
(2)設a,b,c∈(0,+∞),且a+b+c=1,求證(
1
a
-1)(
1
b
-1)(
1
c
-1)≥8

查看答案和解析>>

科目:高中數學 來源: 題型:

已知A、B、C為△ABC的三內角,且其對分別為a、b、c,若A=120°,a=2
3
,b+c=4,則△ABC的面積為
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知A、B、C為△ABC的三個內角,設f(A,B)=sin22A+cos22B-
3
sin2A-cos2B+2

(1)當f(A,B)取得最小值時,求C的大小;
(2)當C=
π
2
時,記h(A)=f(A,B),試求h(A)的表達式及定義域;
(3)在(2)的條件下,是否存在向量
p
,使得函數h(A)的圖象按向量
p
平移后得到函數g(A)=2cos2A的圖象?若存在,求出向量
p
的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a,b,c為三條不同的直線,且a?平面M,b?平面N,M∩N=c,則下面四個命題中正確的是(  )

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 九九热免费精品视频 | 成人欧美一区二区三区色青冈 | 在线免费黄色 | 华丽的挑战在线观看 | 久久aⅴ乱码一区二区三区 午夜在线播放 | 涩涩视频在线看 | 国产女人爽到高潮免费视频 | 亚洲精品一区二区三区蜜桃久 | 久久精品99 | 日本午夜精品 | 精品视频免费在线 | 国产在线一区二区三区在线观看 | 日本久久久久久 | 欧美三区 | 欧美久久精品 | 国产一区久久久 | 精品1区 | 亚洲国产天堂久久综合 | 国产成人精品一区二 | 在线视频亚洲 | 精品人成| 好看的一级毛片 | 欧美中文一区 | ririsao久久精品一区 | 欧美一区二区在线免费观看 | 国产精品久久久久久吹潮 | 九九九九精品九九九九 | 成人黄色免费视频网站 | 久久tv在线观看 | 欧美精品欧美极品欧美激情 | 在线天堂av | 精品国产乱码一区二区三 | 中文字幕视频在线 | 黄色操视频 | 久色成人 | 北条麻妃99精品青青久久 | 人人草在线观看视频 | 亚洲综合色网 | 日韩中文字幕在线观看 | 欧洲一级免费 | 狠狠久|