日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
A是定義在[2,4]上且滿足如下兩個條件的函數Φ(x)組成的集合:
①對任意的x∈[1,2],都有Φ(2x)∈(1,2);
②存在常數L(0<L<1),使得對任意的x1,x2∈[1,2],都有|Φ(2x1)-Φ(2x2)|≤L|x1-x2|;
(1)設Φ(x)=
[
3]1+x,x∈[2,4]
,證明:Φ(x)∈A;
(2)設Φ(x)∈A,如果存在x0∈(1,2),使得x0=Φ(2x0),那么,這樣的x0是唯一的;
(3)設Φ(x)∈A,任取x1∈(1,2),令xn+1=Φ(2xn),n=1,2,…,
證明:給定正整數k,對任意的正整數p,不等式|xk+p-xk|≤
Lk-1
1-L
|x2-x1|
成立.
證明:(1)對任意x∈[1,2],φ(2x)=
[
3]1+2x,x∈[1,2]

于是
[
3]3≤φ(2x)≤
[
3]5
,(2分)
1<
[
3]3<
[
3]5<2

所以φ(2x)∈(1,2).
對任意x1,x2∈(1,2),|φ(2x1)-φ(2x2)|
=|
[
3]1+2x1-
[
3]1+2x2|
=
2|x1-x2|
[
3](1+2x1)2+
[
3](1+2x1)(1+2x2)+
[
3](1+2xx)2

由于
[
3](1+2x1)2+
[
3](1+2x1)(1+2x2+
[
3](1+2x2)2>3

所以0<
2
[
3](1+2x1)2+
[
3](1+2x1)(1+2x2)+
[
3](1+2x2)2
2
3
,(4分)
2
[
3](1+2x1)2+
[
3](1+2x1)(1+2x2)+
[
3](1+2x2)2
=L

則0<L<1,|φ(2x1)-φ(2x2)|≤L|x1-x2|,所以φ(x)∈A.(7分)
(2)反證法:設存在x0,x0′∈(1,2),x0≠x0′,使得x0=φ(2x0),x0′=φ(2x0′),
則由|φ(2x0)-φ(2x0′)|≤L|x0-x0′|,
得|x0-x0'|≤L|x0-x0'|,所以L≥1,與題設矛盾,故結論成立.(10分)
(3)|x3-x2|=|φ(2x2)-φ(2x1)|≤L|x2-x1|,所以進一步可得|xn+1-xn|≤Ln-1|x2-x1|,n∈N*,(12分)
于是|xk+p-xk|=|(xk+p-xk+p-1)+(xk+p-1-xk+p-2)+…+(xk+1-xk)|
≤|xk+p-xk+p-1|+|xk+p-1-xk+p-2|+…+|xk+1-xk|≤Lk+p-2|x2-x1|+LK+P-3|x2-x1|+…+Lk-1|x2-x1|=
LK-1(1-Lp)
1-L
|x2-x1|≤
LK-1
1-L
|x2-x1|
.(16分)
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

A是定義在[2,4]上且滿足如下兩個條件的函數Φ(x)組成的集合:
①對任意的x∈[1,2],都有Φ(2x)∈(1,2);
②存在常數L(0<L<1),使得對任意的x1,x2∈[1,2],都有|Φ(2x1)-Φ(2x2)|≤L|x1-x2|;
(1)設Φ(x)=
[
3]1+x,x∈[2,4]
,證明:Φ(x)∈A;
(2)設Φ(x)∈A,如果存在x0∈(1,2),使得x0=Φ(2x0),那么,這樣的x0是唯一的;
(3)設Φ(x)∈A,任取x1∈(1,2),令xn+1=Φ(2xn),n=1,2,…,
證明:給定正整數k,對任意的正整數p,不等式|xk+p-xk|≤
Lk-1
1-L
|x2-x1|
成立.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

A是定義在[2,4]上且滿足如下兩個條件的函數Φ(x)組成的集合:
①對任意的x∈[1,2],都有Φ(2x)∈(1,2);
②存在常數L(0<L<1),使得對任意的x1,x2∈[1,2],都有|Φ(2x1)-Φ(2x2)|≤L|x1-x2|;
(1)設數學公式,證明:Φ(x)∈A;
(2)設Φ(x)∈A,如果存在x0∈(1,2),使得x0=Φ(2x0),那么,這樣的x0是唯一的;
(3)設Φ(x)∈A,任取x1∈(1,2),令xn+1=Φ(2xn),n=1,2,…,
證明:給定正整數k,對任意的正整數p,不等式數學公式成立.

查看答案和解析>>

科目:高中數學 來源:2010-2011學年江蘇省連云港市東海縣高級中學高三(上)期末數學模擬試卷(一)(解析版) 題型:解答題

A是定義在[2,4]上且滿足如下兩個條件的函數Φ(x)組成的集合:
①對任意的x∈[1,2],都有Φ(2x)∈(1,2);
②存在常數L(0<L<1),使得對任意的x1,x2∈[1,2],都有|Φ(2x1)-Φ(2x2)|≤L|x1-x2|;
(1)設,證明:Φ(x)∈A;
(2)設Φ(x)∈A,如果存在x∈(1,2),使得x=Φ(2x),那么,這樣的x是唯一的;
(3)設Φ(x)∈A,任取x1∈(1,2),令xn+1=Φ(2xn),n=1,2,…,
證明:給定正整數k,對任意的正整數p,不等式成立.

查看答案和解析>>

科目:高中數學 來源:2011年江蘇省蘇北四市高三第二次聯考數學模擬試卷(一)(解析版) 題型:解答題

A是定義在[2,4]上且滿足如下兩個條件的函數Φ(x)組成的集合:
①對任意的x∈[1,2],都有Φ(2x)∈(1,2);
②存在常數L(0<L<1),使得對任意的x1,x2∈[1,2],都有|Φ(2x1)-Φ(2x2)|≤L|x1-x2|;
(1)設,證明:Φ(x)∈A;
(2)設Φ(x)∈A,如果存在x∈(1,2),使得x=Φ(2x),那么,這樣的x是唯一的;
(3)設Φ(x)∈A,任取x1∈(1,2),令xn+1=Φ(2xn),n=1,2,…,
證明:給定正整數k,對任意的正整數p,不等式成立.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 成人不卡视频 | 在线观看a视频 | 中国黄色一级毛片 | 天堂√在线观看一区二区 | 成人一区二区三区久久精品嫩草 | 国产电影一区二区在线观看 | 欧美成人一级片 | 中文日韩在线 | 欧美日韩精品区 | 亚洲激情视频网 | 在线播放国产一区二区三区 | 日韩欧美二区 | 亚洲精品免费在线 | 国产精品女人视频 | 亚洲欧洲日韩在线 | 国产日韩一区二区 | 精品免费在线 | 国模精品视频一区二区 | 天天天干天天射天天天操 | 久久久久久久性 | 国产精品视频 – 无名网 | 免费看国产片在线观看 | 日韩精品一区在线视频 | 日韩成人免费电影 | 亚洲第一免费网站 | 羞羞视频在线观看入口 | 国产精品美女久久久久高潮 | 成人精品视频 | 日韩欧美在线视频 | 国产欧美综合一区二区三区 | 99热这里有精品 | 日韩亚洲精品在线观看 | 久草色视频在线观看 | 黄色影视在线观看 | 午夜网址 | 成人欧美一区二区三区白人 | 欧美日韩国产一区二区三区不卡 | 精品亚洲一区二区三区 | 久久精品久久精品国产大片 | 精品国产一区二区三区在线观看 | 欧美日韩国产在线观看 |