【題目】如圖,在四棱錐P-ABCD中,平面ABCD,
,
,
,
,
,
.
(1)證明:;
(2)求二面角的余弦值;
(3)設(shè)Q為線段PD上的點(diǎn),且直線AQ和平面PAC所成角的正弦值為,求
的值.
【答案】(1)證明見解析;(2);(3)
【解析】
(1)以為原點(diǎn),
為
軸,
為
軸,
為
軸,建立空間直角坐標(biāo)系,利用向量法能證明
.
(2)求出平面的法向量和平面
的法向量,利用向量法能求出二面角
的余弦值.
(3)設(shè)為線段
上的點(diǎn),
,
,
,
,
,求出
,由平面
的法向量
,且直線
和平面
所成角的正弦值為
,利用向量法能求出結(jié)果.
解:(1)證明:∵在四棱錐中,
平面ABCD,
,
,
,
,
,
.
∴以A為原點(diǎn),AB為x軸,AD為y軸,AP為軸,建立空間直角坐標(biāo)系,
則,
,
,
,
,
∴,∴
.
(2)解:,
,
,
設(shè)平面APC的法向量,
則,
取,得
,
平面PCD的法向量,
設(shè)二面角的平面角為
,
則.
∴二面角的余弦值為
.
(3)解:設(shè)Q為線段PD上的點(diǎn),,
,
則,
解得,
,
,
∴,
,
∵平面PAC的法向量,
且直線AQ和平面PAC所成角的正弦值為,
∴,
解得或
(舍),
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新型冠狀病毒最近在全國蔓延,具有很強(qiáng)的人與人之間的傳染性,該病毒在進(jìn)入人體后一般有14天的潛伏期,在這14天的潛伏期內(nèi)患者無任何癥狀,為病毒傳播的最佳時間.假設(shè)每位病毒攜帶者在潛伏期內(nèi)每天有位密切接觸者,接觸病毒攜帶者后被感染的概率為
,每位密切接觸者不用再接觸其他病毒攜帶者.
(1)求一位病毒攜帶者一天內(nèi)感染的人數(shù)的均值;
(2)若,
時,從被感染的第一天算起,試計(jì)算某一位病毒攜帶者在14天潛伏期內(nèi),被他平均累計(jì)感染的人數(shù)(用數(shù)字作答);
(3)3月16日20時18分,由我國軍事科學(xué)院軍事科學(xué)研究院陳薇院士領(lǐng)銜的科學(xué)團(tuán)隊(duì),研制重組新型冠狀病毒疫苗獲批進(jìn)入臨床狀態(tài),新疫苗的使用,可以極大減少感染新型冠狀病毒的人數(shù),為保證安全性和有效性,某科研團(tuán)隊(duì)抽取500支新冠疫苗,觀測其中某項(xiàng)質(zhì)量指標(biāo)值,得到如下頻率分布直方圖:
①求這500支該項(xiàng)質(zhì)量指標(biāo)值的樣本平均值(同一組的數(shù)據(jù)用該組區(qū)代表間的中點(diǎn)值)
②由直方圖可以認(rèn)為,新冠疫苗的該項(xiàng)質(zhì)量指標(biāo)值服從正態(tài)分布
,其中
近似為樣本平均數(shù)
,
近似為樣本方差
,經(jīng)計(jì)算可得這500支新冠疫苗該項(xiàng)指標(biāo)值的樣本方差
.現(xiàn)有5名志愿者參與臨床試驗(yàn),觀測得出該項(xiàng)指標(biāo)值分別為:206,178,195,160,229,試問新冠疫苗的該項(xiàng)指標(biāo)值是否正常,為什么?
參考數(shù)據(jù):,若
,則
,
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場為提高服務(wù)質(zhì)量,隨機(jī)調(diào)查了60名男顧客和80名女顧客,每位顧客均對該商場的服務(wù)給出滿意或不滿意的評價,得到下面不完整的列聯(lián)表:
滿意 | 不滿意 | 合計(jì) | |
男顧客 | 50 | ||
女顧客 | 50 | ||
合計(jì) |
(1)根據(jù)已知條件將列聯(lián)表補(bǔ)充完整;
(2)能否有的把握認(rèn)為男、女顧客對該商場服務(wù)的評價有差異?
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)平面中,△ABC的兩個頂點(diǎn)A、B的坐標(biāo)分別為A(﹣1,0),B (1,0),平面內(nèi)兩點(diǎn)G、M同時滿足下列條件:(1);(2)
;(3)
∥
,則△ABC的頂點(diǎn)C的軌跡方程為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點(diǎn)P(x,y)滿足|x﹣1|+|y﹣a|=1,O為坐標(biāo)原點(diǎn),若的最大值的取值范圍為
,則實(shí)數(shù)a的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為
(α為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
,(
).
(1)求曲線C的極坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于不同的兩點(diǎn),
,指出
的范圍,并求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別為橢圓
的左、右焦點(diǎn),
為該橢圓的一條垂直于
軸的動弦,直線
與
軸交于點(diǎn)
,直線
與直線
的交點(diǎn)為
.
(1)證明:點(diǎn)恒在橢圓
上.
(2)設(shè)直線與橢圓
只有一個公共點(diǎn)
,直線
與直線
相交于點(diǎn)
,在平面內(nèi)是否存在定點(diǎn)
,使得
恒成立?若存在,求出該點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過雙曲線C:1(a>0,b>0)右焦點(diǎn)F2作雙曲線一條漸近線的垂線,垂足為P,與雙曲線交于點(diǎn)A,若
,則雙曲線C的漸近線方程為( )
A.y=±xB.y=±xC.y=±2xD.y=±
x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).(
為自然對數(shù)的底數(shù))
(1)當(dāng)時,設(shè)
,求函數(shù)
在
上的最值;
(2)當(dāng)時,證明:
,其中
(
表示
中較小的數(shù).)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com