【題目】近年來,國家為了鼓勵高校畢業生自主創業,出臺了許多優惠政策,以創業帶動就業.某高校畢業生小李自主創業從事海鮮的批發銷售,他每天以每箱300元的價格購入基圍蝦,然后以每箱500元的價格出售,如果當天購入的基圍蝦賣不完,剩余的就作垃圾處理.為了對自己的經營狀況有更清晰的把握,他記錄了150天基圍蝦的日銷售量(單位:箱),制成如圖所示的頻數分布條形圖.
(1)若小李一天購進12箱基圍蝦.
①求當天的利潤(單位:元)關于當天的銷售量
(單位:箱,
)的函數解析式;
②以這150天記錄的日銷售量的頻率作為概率,求當天的利潤不低于1900元的概率;
(2)以上述樣本數據作為決策的依據,他計劃今后每天購進基圍蝦的箱數相同,并在進貨量為11箱,12箱中選擇其一,試幫他確定進貨的方案,以使其所獲的日平均利潤最大.
【答案】(1)①;②
;(2)選擇每天購進11箱.
【解析】
(1)①根據題意,分,
兩種情況,分別求出利潤的表達式,即可得出結果;
②記“當天的利潤不低于1900元”為事件,根據題意,求出
,由頻率分布直方圖,以及古典概型的概率計算公式,即可求出結果;
(2)分別求出當天的進貨量為11箱和12箱時的日平均利潤,比較大小,即可得出結果.
(1)①當天的銷售量時,利潤
;
當天的銷售量且
時,利潤
;
所以當天的利潤關于銷售量
的函數解析式為
.
②記“當天的利潤不低于1900元”為事件,由
,解得
,
所以事件等價于當天的銷售量不低于11箱;
所以,
即當天的利潤不低于1900元的概率為.
(2)若當天的進貨量為11箱時,日銷售量為8箱的利潤為700元,日銷售量為9箱的利潤為1200元,日銷售量為10箱的利潤為1700元,日銷售量不低于11箱的利潤為2200元則日平均利潤為:
(元)
若當天的進貨量為12箱時,日銷售量為8箱的利潤為400元,日銷售量為9箱的利潤為900元,日銷售量為10箱的利潤為1400元,日銷售量為11箱的利潤為1900元,日銷售量不低于12箱的利潤為2400元,則日平均利潤為:
(元)
由于,所以小李今后應當每天購進11箱基圍蝦.
科目:高中數學 來源: 題型:
【題目】某部門在上班高峰時段對甲、乙兩座地鐵站各隨機抽取了50名乘客,統計其乘車等待時間(指乘客從進站口到乘上車的時間,單位:分鐘)將統計數據按,
,
,…,
分組,制成頻率分布直方圖如圖所示:
(1)求a的值;
(2)記A表示事件“在上班高峰時段某乘客在甲站乘車等待時間少于20分鐘”試估計A的概率;
(3)假設同組中的每個數據用該組區間左端點值來估計,記在上班高峰時段甲、乙兩站各抽取的50名乘客乘車的平均等待時間分別為,求
的值,并直接寫出
與
的大小關系.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某土特產超市為預估2020年元旦期間游客購買土特產的情況,對2019年元旦期間的90位游客購買情況進行統計,得到如下人數分布表.
(1)根據以上數據完成列聯表,并判斷是否有
的把握認為購買金額是否少于60元與性別有關.
(2)為吸引游客,該超市推出一種優惠方案,購買金額不少于60元可抽獎3次,每次中獎概率為p(每次抽獎互不影響,且p的值等于人數分布表中購買金額不少于60元的頻率),中獎1次減5元,中獎2次減10元,中獎3次減15元.若游客甲計劃購買80元的土特產,請列出實際付款數X(元)的分布列并求其數學期望.
附:參考公式和數據:,
.
附表:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2022年北京冬奧會的申辦成功與“3億人上冰雪”口號的提出,將冰雪這個冷項目迅速炒“熱”.北京某綜合大學計劃在一年級開設冰球課程,為了解學生對冰球運動的興趣,隨機從該校一年級學生中抽取了100人進行調查,其中女生中對冰球運動有興趣的占,而男生有10人表示對冰球運動沒有興趣額.
(1)完成列聯表,并回答能否有
的把握認為“對冰球是否有興趣與性別有關”?
有興趣 | 沒興趣 | 合計 | |
男 | 55 | ||
女 | |||
合計 |
(2)已知在被調查的女生中有5名數學系的學生,其中3名對冰球有興趣,現在從這5名學生中隨機抽取3人,求至少有2人對冰球有興趣的概率.
附表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著現代電子技術的迅猛發展,關于元件和系統可靠性的研究已發展成為一門新的學科——可靠性理論.在可靠性理論中,一個元件正常工作的概率稱為該元件的可靠性.元件組成系統,系統正常工作的概率稱為該系統的可靠性.現有(
,
)種電子元件,每種2個,每個元件的可靠性均為
(
).當某元件不能正常工作時,該元件在電路中將形成斷路.現要用這
個元件組成一個電路系統,有如下兩種連接方案可供選擇,當且僅當從A到B的電路為通路狀態時,系統正常工作.
(1)(i)分別寫出按方案①和方案②建立的電路系統的可靠性、
(用
和
表示);
(ii)比較與
的大小,說明哪種連接方案更穩定可靠;
(2)設,
,已知按方案②建立的電路系統可以正常工作,記此時系統中損壞的元件個數為
,求隨機變量
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,P為直線
:
上的動點,動點Q滿足
,且原點O在以
為直徑的圓上.記動點Q的軌跡為曲線C
(1)求曲線C的方程:
(2)過點的直線
與曲線C交于A,B兩點,點D(異于A,B)在C上,直線
,
分別與x軸交于點M,N,且
,求
面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐中,底面
是邊長為4的正方形,
為正三角形,
是
的中點,過
的平面
平行于平面
,且平面
與平面
的交線為
,與平面
的交線為
.
(1)在圖中作出四邊形(不必說出作法和理由);
(2)若,求平面
與平面
形成的銳二面角的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com