【題目】已知函數,設
,
,其中
,
.
(1)若函數在區間
上單調遞增,求實數
的取值范圍;
(2)記,求證:
.
科目:高中數學 來源: 題型:
【題目】十一國慶節期間,某商場舉行購物抽獎活動,舉辦方設置了甲、乙兩種抽獎方案,方案甲的中獎率為,中獎可以獲得3分;方案乙的中獎率為
,中獎可以獲得2分;未中獎則不得分,每人有且只有一次抽獎機會,每次抽獎中獎與否互不影響,抽獎結束后憑分數兌換獎品.
(1)若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計得分為,求
的概率;
(2)若小明、小紅兩人都選擇方案甲或都選擇方案乙進行抽獎,分別求兩種方案下小明、小紅累計得分的分布列,并指出為了累計得分較大,兩種方案下他們選擇何種方案較好,并給出理由?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在極坐標系中,已知曲線,將曲線
上的點向左平移一個單位,然后縱坐標不變,橫坐標軸伸長到原來的2倍,得到曲線
,又已知直線
(
是參數),且直線
與曲線
交于
兩點.
(I)求曲線的直角坐標方程,并說明它是什么曲線;
(II)設定點,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
過點
,離心率為
,
分別為左右焦點.
(1)求橢圓的標準方程;
(2)若上存在兩個點
,橢圓上有兩個點
滿足
三點共線,
三點共線,且
,求四邊形
面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數,
.
(1)若函數在
處有極值,求函數
的最大值;
(2)①是否存在實數,使得關于
的不等式
在
上恒成立?若存在,求出
的取值范圍;若不存在,說明理由;
②證明:不等式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國的高鐵技術發展迅速,鐵道部門計劃在兩城市之間開通高速列車,假設列車在試運行期間,每天在
兩個時間段內各發一趟由
城開往
城的列車(兩車發車情況互不影響),
城發車時間及概率如下表所示:
發車 時間 | ||||||
概率 |
若甲、乙兩位旅客打算從城到
城,他們到達
火車站的時間分別是周六的
和周日的
(只考慮候車時間,不考慮其他因素).
(1)設乙候車所需時間為隨機變量(單位:分鐘),求
的分布列和數學期望
;
(2)求甲、乙兩人候車時間相等的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(
),其最小正周期為
.
(1)求在區間
上的減區間;
(2)將函數圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再將所得的圖象向右平移
個單位,得到函數
的圖象,若關于
的方程
在區間
上有且只有一個實數根,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com