【題目】已知圓M的圓心為M(﹣1,2),直線y=x+4被圓M截得的弦長為 ,點P在直線l:y=x﹣1上.
(1)求圓M的標準方程;
(2)設點Q在圓M上,且滿足 =4
,求點P的坐標;
(3)設半徑為5的圓N與圓M相離,過點P分別作圓M與圓N的切線,切點分別為A,B,若對任意的點P,都有PA=PB成立,求圓心N的坐標.
【答案】
(1)解:點M到直線y=x+4的距離d= =
.
∴圓M的半徑r= =1.
∴圓M的標準方程為:(x+1)2+(y﹣2)2=1.
(2)解:∵點Q在圓M上,∴| |=1.
∴| |=4|
|=4.
設P(a,b)則 ,解得
或
.
∴點P坐標為(﹣1.﹣2)或(3,2).
(3)設N(m,n),P(x,x﹣1),
∵PA,PB分別與圓M,圓N相切,
∴PA2=PM2﹣1,PB2=PN2﹣5.
∵對任意點P,都有PA=PB,
∴(x+1)2+(x﹣3)2﹣1=(x﹣m)2+(x﹣1﹣n)2﹣25恒成立.
整理得:2(m+n﹣1)x+33﹣m2﹣n2﹣2n=0恒成立.
∴ ,解得
或
.
∴N(5,﹣4)或N(﹣3,4).
【解析】(1)求出M到直線y=x+4的距離,利用垂徑定理計算圓M的半徑,得出圓M的標準方程;(2)由|MQ|=1可知|MP|=4,利用兩點間的距離公式列方程解出P點坐標;(3)由切線的性質可知PA2=PM2﹣1,PB2=PN2﹣5.設N(m,n),P(x,x﹣1),列出方程,令關于x的方程恒成立得出m,n.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,
底面
,底面
是直角梯形,
,
是
上的點.
(1)求證: 平面平面
;
(2)若是
的中點,且二面角
的余弦值為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a,b,c分別是△ABC的三個內角A,B,C所對的邊,且滿足(2b﹣a)cosC=ccosA.
(Ⅰ)求角C的大小;
(Ⅱ)設,求y的最大值并判斷當y取得最大值時△ABC的形狀.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2000多年前,古希臘大數學家阿波羅尼奧斯((Apollonius)發現:平面截圓錐的截口曲線是圓錐曲線.已知圓錐的高為,
為地面直徑,頂角為
,那么不過頂點
的平面;與
夾角
時,截口曲線為橢圓;與
夾角
時,截口曲線為拋物線;與
夾角
時,截口曲線為雙曲線.如圖,底面內的直線
,過
的平面截圓錐得到的曲線為橢圓,其中與
的交點為
,可知
為長軸.那么當
在線段
上運動時,截口曲線的短軸頂點的軌跡為( )
A. 圓的部分 B. 橢圓的部分 C. 雙曲線的部分 D. 拋物線的部分
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學數學老師分別用兩種不同教學方式對入學數學平均分和優秀率都相同的甲、乙兩個高一新班(人數均為 人)進行教學(兩班的學生學習數學勤奮程度和自覺性一致),數學期終考試成績莖葉圖如下:
(1)現從乙班數學成績不低于 分的同學中隨機抽取兩名同學,求至少有一名成績為
分的同學被抽中的概率;
(2)學校規定:成績不低于 分的優秀,請填寫下面的
聯表,并判斷有多大把握認為“成績優秀與教學方式有關”.
附:參考公式及數據
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,以坐標原點
為極點,
軸正半軸為極軸建立極坐標系,已知曲線
的極坐標方程為:
,直線
的參數方程是
(
為參數,
).
(1)求曲線的直角坐標方程;
(2)設直線與曲線
交于兩點
,且線段
的中點為
,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2﹣kx+(2k﹣3).
(1)若k= 時,解不等式f(x)>0;
(2)若f(x)>0對任意x∈R恒成立,求實數k的取值范圍;
(3)若函數f(x)兩個不同的零點均大于 ,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2017廣東佛山二模】已知橢圓:
(
)的焦距為4,左、右焦點分別為
、
,且
與拋物線
:
的交點所在的直線經過
.
(Ⅰ)求橢圓的方程;
(Ⅱ)過的直線
與
交于
,
兩點,與拋物線
無公共點,求
的面積的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com