日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
對于函數f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為函數f(x)的不動點,已知f(x)=ax2+(b+1)x+(b-1)(a≠0)
(1)當a=1,b=-2求函數f(x)的不動點;
(2)若對任意實數b,函數f(x)恒有兩個相異不動點,求a的取值范圍;
(3)在(2)的條件下,令g(x)=
1
x+2
+loga 
1+x
1-x
,解關于x的不等式g[x(x-
1
2
)]<
1
2
分析:(1)將a=1,b=-2代入f(x)=ax2+(b+1)x+b-1 (a≠0),求出f(x),令f(x)=x,解方程求不動點即可;
(2)由ax2+(b+1)x+b-1=x有兩個不動點,即ax2+bx+b-1=0有兩個不等實根,可通過判別式大于0得到關于參數a,b的不等式b2-4ab+4a>0,由于此不等式恒成立,轉化為16a2-16a<0即可.
(3)先證明g(x)在定義域(-1,1)上遞減,再利用函數的單調性,將不等式轉化為具體不等式組,從而得解.
解答:解:(1)當a=1,b=-2時,
ax2+(b+1)x+(b-1)=x可化為x2-x-3=x
∴x2-2x-3=0
∴x=3或-1
∴所求的不動點為-1或3.
(2)對任意實數b,函數f(x)恒有兩個相異不動點,即ax2+bx+(b-1)=0有兩個不等實根
∴△1>0,即b2-4ab+4a>0對任意b∈R恒成立
∴△2=16a2-16a<0
∴0<a<1
(3)g′(x)=-
1
(x+2)2
+
2
(1+x)(1-x)lna

1+x
1-x
>0

∴-1<x<1
∴(1+x)(1-x)>0
∵0<a<1
∴lna<0
∴g′(x)<0
∴g(x)在定義域(-1,1)上遞減,
g(0)=
1
2

g[x(x-
1
2
)]<
1
2
可化為g[x(x-
1
2
)]<g(0)

-1<x(x-
1
2
)<1
x(x-
1
2
)>0

{x|
1-
17
4
<x<0
1
2
<x<
1+
17
4
}
點評:本題考點是函數恒成立問題,考查新定義,考查函數的單調性考查二次函數、方程的基本性質、不等式的有關知識,解題的關鍵是對新定義的理解.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

對于函數f(x),若存在區間M=[a,b](其中a<b),使得{y|y=f(x),x∈M}=M,則稱區間M為函數f(x)的一個“穩定區間”.給出下列4個函數:
①f(x)=(x-1)2;②f(x)=|2x-1|;③f(x)=cos
π2
x
;④f(x)=ex.其中存在“穩定區間”的函數有
 
(填出所有滿足條件的函數序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數f(x),若在其定義域內存在兩個實數a,b(a<b),使當x∈[a,b]時,f(x)的值域也是[a,b],則稱函數f(x)為“科比函數”.若函數f(x)=k+
x+2
是“科比函數”,則實數k的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為f(x)的不動點.如果函數
f(x)=ax2+bx+1(a>0)有兩個相異的不動點x1,x2
(1)若x1<1<x2,且f(x)的圖象關于直線x=m對稱,求證:
12
<m<1;
(2)若|x1|<2且|x1-x2|=2,求b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數f(x),若f(x0)=x0,則稱x0為f(x)的:“不動點”;若f[f(x0)]=x0,則稱x0為f(x)的“穩定點”.函數f(x)的“不動點”和“穩定點”的集合分別記為A和B,即A={x|f[f(x)]=x}.
(1)設函數f(x)=ax2+bx+c(a≠0),且A=∅,求證:B=∅;
(2)設函數f(x)=3x+4,求集合A和B,并分析能否根據(1)(2)中的結論判斷A=B恒成立?若能,請給出證明,若不能,請舉以反例.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數f(x),若存在x0∈R,使得f(x0)=x0,則稱x0為函數f(x)的不動點.若函數f(x)=
x2+a
bx-c
(b,c∈N*)有且僅有兩個不動點0和2,且f(-2)<-
1
2

(1)試求函數f(x)的單調區間,
(2)已知各項不為0的數列{an}滿足4Sn•f(
1
an
)=1,其中Sn表示數列{an}的前n項和,求證:(1-
1
an
)an+1
1
e
<(1-
1
an
)an

(3)在(2)的前題條件下,設bn=-
1
an
,Tn表示數列{bn}的前n項和,求證:T2011-1<ln2011<T2010

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产一区欧美 | 国产一级片免费看 | 精品久久久久久久久久久 | 国产精品国产精品国产专区不卡 | 日韩视频免费看 | 精品在线免费视频 | 毛片一区 | 五月婷婷 | 一级片国产| 日韩成人三级 | 特级做a爱片免费69 伊人超碰在线 | 国产在线观看一区二区三区 | 中文字幕国产在线 | a在线视频| 久草黄色| 婷婷俺也去 | 亚洲影视一区 | 青青青在线视频 | 国产三级在线观看视频 | 精品一区二区在线播放 | 98在线视频| 免费国产网站 | 欧美在线日韩 | 欧美有码视频 | 国产不卡视频 | 久久免费福利视频 | 91综合在线 | 欧美精品一二三区 | 免费色视频 | 一区二区三区亚洲 | 亚洲综合另类 | 亚洲国产精品久久久久久久 | 亚洲精品91| 亚洲一区二区三区在线视频 | 黄色成人免费视频 | 玖玖在线观看 | 成年人免费在线观看 | 日韩欧美精品一区二区 | 国产综合亚洲精品一区二 | 久久久九九 | 婷婷俺也去|