【題目】已知函數(shù).
(1)的最小正周期和單調(diào)遞增區(qū)間;
(2)已知是
三邊長(zhǎng),且
的面積
.求角
及
的值.
【答案】(1);(2)
或
【解析】試題分析: 解析式利用兩角和與差的正弦函數(shù)公式及二倍角的余弦函數(shù)公式化簡(jiǎn),整理為一個(gè)角的正弦函數(shù),找出
的值代入周期公式即可求出
的最小正周期,利用正弦函數(shù)的單調(diào)性即可求出
的單調(diào)遞增區(qū)間。
由
,根據(jù)第一問(wèn)確定出的解析式求出
的度數(shù),利用三角形面積公式列出關(guān)系式,將
值代入求出
的值,利用余弦定理列出關(guān)系式,將
代入求出
的值,聯(lián)立即可求出
的值。
解析:(Ⅰ)f(x)=sin2xcos+cos2xsin
+sin2xcos
﹣cos2xsin
+cos2x+1=
sin2x+cos2x+1=2sin(2x+
)+1,
∵ω=2,∴T==π;
令﹣+2kπ≤2x+
≤
+2kπ,k∈Z,得到﹣
+kπ≤x≤
+kπ,k∈Z,
則函數(shù)f(x)的遞增區(qū)間是[﹣+kπ,
+kπ],k∈Z;
(Ⅱ)由f(C)=2,得到2sin(2C+)+1=2,即sin(2C+
)=
,
∴2C+=
或2C+
=
,
解得:C=0(舍去)或C=,
∵S=10,
∴absinC=
ab=10
,即ab=40①,
由余弦定理得:c2=a2+b2﹣2abcosC,即49=a2+b2﹣ab,
將ab=40代入得:a2+b2=89②,
聯(lián)立①②解得:a=8,b=5或a=5,b=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),關(guān)于
的不等式
只有兩個(gè)整數(shù)解,則實(shí)數(shù)
的取值范圍是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高一某班的一次數(shù)學(xué)測(cè)試成績(jī)(滿分為100分)的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖,據(jù)此解答如下問(wèn)題;
(1)求分?jǐn)?shù)在[50,60)的頻率及全班的人數(shù);
(2)求分?jǐn)?shù)在[80,90)之間的頻數(shù),并計(jì)算頻率分布直方圖中[80,90)間的矩形的高;
(3)根據(jù)頻率分布直方圖,估計(jì)該班數(shù)學(xué)成績(jī)的平均數(shù)與中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓過(guò)兩點(diǎn)
,
,且圓心
在直線
上.
(Ⅰ)求圓的標(biāo)準(zhǔn)方程;
(Ⅱ)直線過(guò)點(diǎn)
且與圓
有兩個(gè)不同的交點(diǎn)
,
,若直線
的斜率
大于0,求
的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,是否存在直線使得弦
的垂直平分線過(guò)點(diǎn)
,若存在,求出直線
的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)命題:實(shí)數(shù)
滿足
(
),命題
:實(shí)數(shù)
滿足
.
(1)若且“
”為真,求實(shí)數(shù)
的取值范圍;
(2)若是
的充分不必要條件,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱臺(tái)的上下底面分別是邊長(zhǎng)為2和4的正方形,
= 4且
⊥底面
,點(diǎn)
為
的中點(diǎn).
(Ⅰ)求證: 面
;
(Ⅱ)在邊上找一點(diǎn)
,使
∥面
,
并求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱柱中,側(cè)面
為矩形,
,
,
為
的中點(diǎn),
與
交于點(diǎn)
,
側(cè)面
.
(1)證明: ;
(2)若,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,
底面
,底面
是直角梯形,
,
,
,
,點(diǎn)
在
上,且
.
(Ⅰ)已知點(diǎn)在
上,且
,求證:平面
平面
;
(Ⅱ)當(dāng)二面角的余弦值為多少時(shí),直線
與平面
所成的角為
?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓Cx2+y2+2x﹣4y+3=0
(1)已知不過(guò)原點(diǎn)的直線l與圓C相切,且在x軸,y軸上的截距相等,求直線l的方程;
(2)求經(jīng)過(guò)原點(diǎn)且被圓C截得的線段長(zhǎng)為2的直線方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com