日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知a>0,函數f(x)=x3-a,x∈[0,+∞),設x1>0,記曲線y=f(x)在點M(x1,f(x1))處的切線l.
(1)求l的方程;
(2)設l與x軸的交點是(x2,0),證明x2a
13
分析:(1)欲求在點(1,1)處的切線方程,只須求出其斜率的值即可,故先利用導數求出在x=1處的導函數值,再結合導數的幾何意義即可求出切線的斜率,從而問題解決.
(2)先在直線的方程中令y=0得到的x2值,欲證明x2a
1
3
.利用作差比較法即可.即利用因式分解的方法證x2-a
1
3
≥0即可.
解答:解:(1)解:f'(x)=3x2(x>0).∵切線l經過曲線f(x)=x3-a上的點M(x1,f(x1)),
又∵切線l的斜率為k=f'(x1)=3x12
據點斜式,得y-f(x1)=f'(x1)(x-x1),
整理,得y=3x12•x-2x12-a,x1>0.
因此直線l的方程為y=3x12x-2x13-a(x1>0);
(2)證明:∵l與x軸交點為(x2,0),∴3x12x2-2x12-a=0,∵x1>0,a>0,
x2=
1
3
(2x1+
a
x
2
1
)

由于x2-a
1
3
=
1
3
x
2
1
(2
x
3
1
+a-3
x
2
1
a
1
3
)=
1
3
x
2
1
(x1-a
1
3
)2(2x1+a
1
3
)

且x1>0,a>0,∴2x1+a
1
3
>0

(x1-a
1
3
)2≥0
,∴x2-a
1
3
≥0

當且僅當x1=a
1
3
,上式取“=”號.
點評:本小題主要考查直線的斜率、導數的幾何意義、利用導數研究曲線上某點切線方程等基礎知識,考查運算求解能力.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知a>0,函數f(x)=ax2+bx+c,若x0滿足關于x的方程2ax+b=0,則下列選項的命題中為假命題的是(  )
A、?x∈R,f(x)≤f(x0B、?x∈R,f(x)≥f(x0C、?x∈R,f(x)≤f(x0D、?x∈R,f(x)≥f(x0

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a>0,函數f(x)=ln(2-x)+ax.
(1)求函數f(x)的單調區間;(2)設曲線y=f(x)在點(1,f(1))處的切線為l,若l與圓(x+1)2+y2=1相切,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a>0,函數f(x)=ln(2-x)+ax.
(1)設曲線y=f(x)在點(1,f(1))處的切線為l,若l與圓(x+1)2+y2=1相切,求a的值;
(2)求函數f(x)的單調區間;
(3)求函數f(x)在[0,1]上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a>0,函數f(x)=lnx-ax2,x>0.(f(x)的圖象連續不斷)
(Ⅰ)當a=
1
8

①求f(x)的單調區間;
②證明:存在x0∈(2,+∞),使f(x0)=f(
3
2
);
(Ⅱ)若存在均屬于區間[1,3]的α,β,且β-α≥1,使f(α)=f(β),證明
ln3-ln2
5
≤a≤
ln2
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a>0,函數f(x)=
|x-2a|
x+2a
在區間[1,4]上的最大值等于
1
2
,則a的值為
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 精品一区二区三区久久 | 精品日韩av | 精品成人一区 | 一区二区久久 | 五月激情综合 | 99国产精品 | 91av国产在线视频 | 成人免费视频www在线观看我 | 中文字幕在线播放第一页 | 欧美国产精品 | 亚洲国产二区 | 久久久久av | h视频在线免费 | 日韩在线观看 | 成人毛片在线免费看 | 999精品在线 | 91天堂| 久久成人一区 | 五月婷婷中文 | 鲁视频| 在线视频福利 | 蜜桃视频精品 | 国产精选视频 | 区一区二区三在线观看 | 天堂va久久久噜噜噜久久va | 亚洲综合大片69999 | 久久久久久久久久久久久久久久久久久久 | 色片免费| 九九99九九精彩46 | 91在线观看视频 | 成人在线观看中文字幕 | 黄色国产一级视频 | 久久久精品日韩 | 国产精品夜夜春夜夜爽久久电影 | 国产亚洲综合视频 | 欧美亚洲视频在线观看 | 性电影网站 | 欧美手机在线 | 久久综合88 | 久久久久一区二区三区 | 四虎在线播放 |