【題目】如圖,在△ABC中,BA=BC,以AB為直徑的⊙O分別交AC、BC于點D、E,BC的延長線于⊙O的切線AF交于點F.
(1)求證:∠ABC=2∠CAF;
(2)若,CE∶EB=1∶4,求CE的長.
【答案】(1)見解析;(2)2。
【解析】試題分析:(1)依據題設條件證明“∠CAF=∠ABD”,即說明BA=BC,再借助等腰三角形的高線即為角平分線進行推證;(2)借助相似三角形的性質,即對應邊成比例建立方程進行求解:
解: (1) 證明:連接BD.
∵AB為⊙O的直徑,
∴∠ADB=90°,
∴∠DAB+∠ABD=90°.
∵AF是⊙O的切線,
∴∠FAB=90°,
∴∠CAF+∠DAB=90°,
∴∠CAF=∠ABD,
∴BA=BC
∴∠ABC=2∠ABD
∴∠ABC=2∠CAF.
(2)解:連接DE,
∵四邊形ABED是圓內接四邊形,
∴∠ABC=∠CDE,∠CED=∠CAB,
∴△CDE∽△CBA,
∴CD∶CB=CE∶CA
∴CD×CA=CE×CB
∴BA=BC,∠ADB=90°
∴
設CE=x,∵CE:EB=1:4,∴EB=5x,
∴
∴CE=2.
科目:高中數學 來源: 題型:
【題目】如圖,已知底角為45的等腰梯形ABCD,底邊BC長為7cm,腰長為,當一條垂直于底邊BC
(垂足為F)的直線l從左至右移動(與梯形ABCD有公共點)時,直線l把梯形分成兩部分,令BF=x
(1)試寫出直線l左邊部分的面積f(x)與x的函數.
(2)已知A={x|f(x)<4},B={x|a2<x<a+2},若A∪B=B,求a的取值范圍。.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(
),
.
(1)若的圖象在
處的切線恰好也是
圖象的切線.
①求實數的值;
②若方程在區(qū)間
內有唯一實數解,求實數
的取值范圍.
(2)當時,求證:對于區(qū)間
上的任意兩個不相等的實數
,
,都有
成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=cos xsin 2x,下列結論中正確的是________(填入正確結論的序號).
①y=f(x)的圖象關于點(2π,0)中心對稱;
②y=f(x)的圖象關于直線x=π對稱;
③f(x)的最大值為;
④f(x)既是奇函數,又是周期函數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題13分)已知函數f(x)=-
(a>0,x>0).
(1)求證:f(x)在(0,+∞)上是單調遞增函數;
(2)若f(x)在[,2]上的值域是[
,2],求a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校從高二年級學生中隨機抽取60名學生,將其期中考試的政治成績(均為整數)分成六段: ,
,
,…
后得到如下頻率分布直方圖.
(1)根據頻率分布直方圖,估計該校高二年級學生期中考試政治成績的平均分、眾數、中位數;(小數點后保留一位有效數字)
(2)用分層抽樣的方法在各分數段的學生中抽取一個容量為20的樣本,則各分數段抽取的人數分別是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某家庭進行理財投資,根據長期收益率市場預測,投資類產品的收益與投資額成正比,投資
類產品的收益與投資額的算術平方根成正比.已知投資1萬元時
兩類產品的收益分別為0.125萬元和0.5萬元.
(1)分別寫出兩類產品的收益與投資額的函數關系;
(2)該家庭有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)是R上的偶函數,且當x>0時,函數的解析式為f(x)= .
(1)判斷并證明f(x)在(0,+∞)上的單調性;
(2)求當x<0時,函數的解析式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com