已知函數(shù),
(
).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求證:當(dāng)時(shí),對(duì)于任意
,總有
成立.
(1)當(dāng)時(shí),
的單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為
,
;當(dāng)
時(shí),
的單調(diào)遞增區(qū)間為
,
,單調(diào)遞減區(qū)間為
;(2)詳見解析.
解析試題分析:(1)對(duì)于含參數(shù)的函數(shù)的單調(diào)區(qū)間,只需在定義域內(nèi)考慮導(dǎo)函數(shù)符號(hào),同時(shí)要注意分類討論標(biāo)準(zhǔn)的確定.先求
科目:高中數(shù)學(xué)
來源:
題型:解答題
定義在
科目:高中數(shù)學(xué)
來源:
題型:解答題
設(shè)函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
(14分)己知函數(shù)f (x)=ex,x
科目:高中數(shù)學(xué)
來源:
題型:解答題
(本小題13分)己知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表 湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū),分母恒正,只需考慮分子二次函數(shù)的符號(hào),所以討論開口方向即可;(2)由于
是獨(dú)立的兩個(gè)變量,故
分別代表
,
的任意兩個(gè)函數(shù)值,要使得
恒成立,只需證明
,分別利用導(dǎo)數(shù)求其最大值和最小值,從而得證,該題入手,可能很多同學(xué)困惑于
這兩個(gè)變量的處理,從而造成了解題障礙.
試題解析:(Ⅰ)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/27/5/3qyze.png" style="vertical-align:middle;" />,
.
當(dāng)時(shí),
當(dāng)變化時(shí),
,
的變化情況如下表:
當(dāng)0 0 ↘ ↗ ↘ 時(shí),
當(dāng)變化時(shí),
,
的變化情況如下表:
1加1閱讀好卷系列答案
專項(xiàng)復(fù)習(xí)訓(xùn)練系列答案
初中語文教與學(xué)閱讀系列答案
閱讀快車系列答案
完形填空與閱讀理解周秘計(jì)劃系列答案
英語閱讀理解150篇系列答案
奔騰英語系列答案
標(biāo)準(zhǔn)閱讀系列答案
53English系列答案
考綱強(qiáng)化閱讀系列答案
年級(jí)
高中課程
年級(jí)
初中課程
高一
高一免費(fèi)課程推薦!
初一
初一免費(fèi)課程推薦!
高二
高二免費(fèi)課程推薦!
初二
初二免費(fèi)課程推薦!
高三
高三免費(fèi)課程推薦!
初三
初三免費(fèi)課程推薦!
上的函數(shù)
同時(shí)滿足以下條件:
①在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù);
②是偶函數(shù);
③在x=0處的切線與直線
y=x+2垂直.
(1)求函數(shù)=
的解析式;
(2)設(shè)g(x)=,若存在實(shí)數(shù)x∈[1,e],使
<
,求實(shí)數(shù)m的取值范圍.
在
及
時(shí)取得極值.
(1)求a、b的值;(2)若對(duì)于任意的,都有
成立,求c的取值范圍.
R
(1)求 f (x)的反函數(shù)圖象上點(diǎn)(1,0)處的切線方程。
(2)證明:曲線y=f(x)與曲線y=有唯一公共點(diǎn);
(3)設(shè),比較
與
的大小,并說明理由。
。
(1)試探究函數(shù)的零點(diǎn)個(gè)數(shù);
(2)若的圖象與
軸交于
兩點(diǎn),
中點(diǎn)為
,設(shè)函數(shù)
的導(dǎo)函數(shù)為
, 求證:
。
(k為常數(shù),e=2.71828……是自然對(duì)數(shù)的底數(shù)),曲線
在點(diǎn)
處的切線與x軸平行。
(1)求k的值;
(2)求的單調(diào)區(qū)間;
(3)設(shè),其中
為
的導(dǎo)函數(shù),證明:對(duì)任意
,
。
.
(I)若,求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)求證:
(Ⅲ)若函數(shù)的圖象在點(diǎn)
處的切線的傾斜角為
,對(duì)于任意的
,函數(shù)
是
的導(dǎo)函數(shù))在區(qū)間
上總不是單調(diào)函數(shù),求
的取值范圍。
版權(quán)聲明:本站所有文章,圖片來源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無意侵犯版權(quán),如有侵權(quán),請(qǐng)作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號(hào): 滬ICP備07509807號(hào)-10 鄂公網(wǎng)安備42018502000812號(hào)