日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
偶函數f(x)的定義域為D={x|x≠0},且滿足對于任意x,y∈D,有f(xy)=f(x)+f(y),若x>1時,f(x)>0.
(1)求f(1)的值;
(2)求證f(x)在區間(0,+∞)上是增函數;
(3)若f(4)=1,求不等式f(3x+1)≤2的解集.
分析:(1)令x=y=1代入f(xy)=f(x)+f(y),即可求得f(1)的值;
(2)可令y=
1
x
,代入f(xy)=f(x)+f(y),得到f(x)+f(
1
x
)=0.再利用函數單調性的定義判斷即可;
(3)利用偶函數f(x)在區間(0,+∞)上是增函數,f(4)=1,將不等式f(3x+1)≤2轉化為|3x+1|≤16(x≠0),解之即可.
解答:解:(1)令x=y=1代入f(xy)=f(x)+f(y),得f(1)=0;
(2)令y=
1
x
,代入f(xy)=f(x)+f(y),得f(x)+f(
1
x
)=0,即f(
1
x
)=-f(x);
∵x>1時,f(x)>0,令0<x1<x2,
x2
x1
>1,
∴f(
x2
x1
)=f(x2
1
x1
)=f(x2)+f(
1
x1
)=f(x2)-f(x1)>0,
∴f(x2)>f(x1).
∴f(x)在區間(0,+∞)上是增函數;
(3)∵偶函數f(x)在區間(0,+∞)上是增函數,f(4)=1,
∵f(3x+1)≤2=f(4)+f(4)=f(16),
∴|3x+1|≤16(x≠0),
∴-
17
3
≤x<0或0<x≤5.
∴所求不等式的解集為:{x|-
17
3
≤x<0或0<x≤5}.
點評:本題考查抽象函數及其用,著重考查函數的單調性,奇偶性及解絕對值不等式,突出考出化歸思想與綜合分析與應用的能力,屬于難題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網定義在R上的偶函數f(x)的部分圖象如圖所示,則在(-2,0)上,下列函數中與f(x)的單調性不同的是( 。
A、y=x2+1
B、y=|x|+1
C、y=
2x+1,x≥0
x3+1,x<0
D、y=
ex,x≥0
e-x,x<0

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)的定義在R上的偶函數,且是以4為周期的周期函數,當x∈[0,2]時,f(x)=2x-cosx,則a=f(-
3
2
)與b=f(
15
2
)的大小關系為
a>b
a>b

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的偶函數f(x)的最小值為1,當x∈[0,+∞)時,f(x)=aex
(Ⅰ)求函數f(x)的解析式;
(Ⅱ)求最大的整數m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤ex.(注:e為自然對數的底數)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的偶函數f (x)的單調減區間為[0,+∞),則不等式f(x)<f(2-x)的解集是
(1,+∞)
(1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在實數集R上的偶函數f(x)的最小值為3,且當x≥0時,f(x)=3ex+a(a為常數).
(1)求函數f(x)的解析式;
(2)求最大的整數m(m>1),使得存在實數t,對任意的x∈[1,m]都有f(x+t)<3ex.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美精品一二三 | 国产97免费视频 | 国产99一区 | 久久精品久久精品国产大片 | 亚洲欧美日韩高清 | 黄色网在线播放 | 中文字幕一区二区三区四区 | 国产精品成人一区二区三区夜夜夜 | 色视频网站在线观看 | 97超碰人人| 一色桃子av一区二区免费 | 人人操日日干 | 国产精品欧美一区二区三区不卡 | 中文字幕三级在线看午夜 | 亚洲视频二 | 久久综合久久综合久久综合 | 国产精品国产三级国产aⅴ无密码 | 成人小视频在线观看 | 草逼网站 | 日本久久久一区二区三区 | 精品影院 | 国产成人一区二区 | 成人日韩在线 | 成人超碰 | 波多野结衣一区在线观看 | 日韩在线观看高清 | 精品欧美乱码久久久久久 | 亚洲精品久久久蜜臀 | 精品国产一区二区三区久久影院 | 日韩精品免费在线观看 | 一区二区av | 国产精品福利网站 | 婷五月综合 | 国产精品成人一区二区三区 | 免费黄色片视频网站 | 美日韩一区二区 | 91视频国内 | 国内在线一区 | 日韩高清中文字幕 | 91原创视频在线观看 | 欧美一区二区精品久久 |