試題分析:根據(jù)題意,由于菱形

的邊長為

,

,

為

的中點,先以點A位坐標(biāo)原點建立的直角坐標(biāo)系,求出其它各點的坐標(biāo),然后利用點的坐標(biāo)表示出

,把所求問題轉(zhuǎn)化為在平面區(qū)域內(nèi)求線性目標(biāo)函數(shù)的最值問題求解即可。解::以點A位坐標(biāo)原點建立如圖所示的直角坐標(biāo)系,由于菱形ABCD的邊長為2,∠A=60°,M為DC的中點,故點A(0,0),則B(2,0),C(3,

),D(1,

),M(2,

)
設(shè)N(x,y),N為平行四邊形內(nèi)(包括邊界)一動點,對應(yīng)的平面區(qū)域即為平行四邊形ABCD及其內(nèi)部區(qū)域.

=4,故可知答案為4.
點評:本題主要考查向量在幾何中的應(yīng)用以及數(shù)形結(jié)合思想的應(yīng)用和轉(zhuǎn)化思想的應(yīng)用,是對基礎(chǔ)知識和基本思想的考查,屬于中檔