【題目】如圖為一簡單組合體,其底面ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.
(1)請畫出該幾何體的三視圖;
(2)求四棱錐B﹣CEPD的體積.
【答案】解:(1)該組合體的主視圖和側視圖如圖示:
(2)∵PD平面ABCD,PD平面PDCE
∴平面PDCE⊥平面ABCD
∵BC⊥CD
∴BC⊥平面PDCE(5分)
∵SPCDE=(PD+EC)DC=3
∴四棱錐B﹣CEPD的體積
V=SPCDEBC=2.
【解析】(1)由已知中底面ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.根據三視圖的定義,易得到該幾何體的三視圖;
(2)由已知中PD⊥平面ABCD,且PD=AD=2EC=2,我們計算出棱錐的底面面積和高,代入棱體積公式,即可求出四棱錐B﹣CEPD的體積;
【考點精析】本題主要考查了簡單空間圖形的三視圖的相關知識點,需要掌握畫三視圖的原則:長對齊、高對齊、寬相等才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐中,
底面
,底面
是直角梯形,
,
,
,
,點
在
上,且
.
(Ⅰ)已知點在
上,且
,求證:平面
平面
;
(Ⅱ)當二面角的余弦值為多少時,直線
與平面
所成的角為
?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓Cx2+y2+2x﹣4y+3=0
(1)已知不過原點的直線l與圓C相切,且在x軸,y軸上的截距相等,求直線l的方程;
(2)求經過原點且被圓C截得的線段長為2的直線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某幾何體的俯視圖是如圖所示的矩形,正視圖是一個底邊長為8、高為4的等腰三角形,側視圖是一個底邊長為6、高為4的等腰三角形.
(1)求該幾何體的體積;
(2)求該幾何體的表面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】第96屆(春季)全國糖酒商品交易會于2017年3月23日至25日在四川舉辦.交易會開始前,展館附近一家川菜特色餐廳為了研究參會人數與餐廳所需原材料數量的關系,查閱了最近5次交易會的參會人數(萬人)與餐廳所用原材料數量
(袋),得到如下數據:
(Ⅰ)請根據所給五組數據,求出關于
的線性回歸方程
;
(Ⅱ)已知購買原材料的費用(元)與數量
(袋)的關系為
投入使用的每袋原材料相應的銷售收入為600元,多余的原材料只能無償返還.若餐廳原材料現恰好用完,據悉本次交易會大約有14萬人參加,根據(Ⅰ)中求出的線性回歸方程,預測餐廳應購買多少袋原材料,才能獲得最大利潤,最大利潤是多少?(注:利潤
銷售收入
原材料費用).
(參考公式: ,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2﹣2mx+m2+4m﹣2.
(1)若函數f(x)在區間[0,1]上是單調遞減函數,求實數m的取值范圍;
(2)若函數f(x)在區間[0,1]上有最小值﹣3,求實數m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為坐標原點,直線
的方程為
,點
是拋物線
上到直線
距離最小的點,點
是拋物線上異于點
的點,直線
與直線
交于點
,過點
與
軸平行的直線與拋物線
交于點
.
(1)求點的坐標;
(2)求證:直線恒過定點
;
(3)在(2)的條件下過向
軸做垂線,垂足為
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正△ABC三個頂點都在半徑為2的球面上,球心O到平面ABC的距離為1,點E是線段AB的中點,過點E作球O的截面,則截面面積的最小值是( )
A.
B.2π
C.
D.3π
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側棱PD⊥底面ABCD,PD=DC=2,E是PC的中點,作EF⊥PB交PB于點F.
(1)證明:PA∥平面EDB;
(2)證明:PB⊥平面EFD.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com