日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知點Pn(an,bn)都在直線L:y=2x+2上,P1為直線L與x軸的交點,數列{an}成等差數列,公差為1(n∈N*).
(I)求數列{an},{bn}的通項公式;
(II)求證:
1
4
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5
(n≥3,n∈N*).
分析:(I)由題設知P1(-1,0),an=-1+(n-1)×1=n-2,bn=2(n-2)+2=2n-2.
(II)由Pn(n-2,2n-2),知|P1Pn|=
5
(n-1),(n≥3),由此能夠證明
1
4
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5
(n≥3,n∈N*).
解答:解:(I)∵P1為直線L:y=2x+2與x軸的交點,
∴當y=0時,x=-1,即P1(-1,0).
∴a1=-1,b1=0,
∵數列{an}成等差數列,公差為1(n∈N*),
∴an=-1+(n-1)×1=n-2,
∵點Pn(an,bn)都在直線L:y=2x+2上,
∴bn=2(n-2)+2=2n-2
(II)∵Pn(n-2,2n-2),
∴|P1Pn|=
5
(n-1),(n≥3)
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
=
1
5
[1+
1
22
+
1
32
+…+
1
(n-1)2
]
1
5
[1+
1
1×2
+
1
2×3
+…+
1
(n-2)(n-1)
]=
1
5
[1+1-
1
n-1
]<
2
5
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
=
1
5
[1+
1
22
+
1
32
+…+
1
(n-1)2
]
1
5
[1+
1
22
+
1
3×4
+…+
1
(n-1)(n)
]=
1
5
[1+
1
4
+
1
3
-
1
n
]>
1
4

1
4
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5
(n≥3,n∈N*).
點評:本題考查數列的通項公式的求法和不等式的證明,考查運算求解能力,推理論證能力;考查化歸與轉化思想.對數學思維的要求比較高,有一定的探索性.綜合性強,難度大,是高考的重點.解題時要認真審題,仔細解答,注意放縮法的合理運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(理)已知點A(1,0),B(0,1)和互不相同的點P1,P2,P3,…,Pn,…,滿足
OPn
=an
OA
+bn
OB
(n∈N*)
,O為坐標原點,其中{an}、{bn}分別為等差數列和等比數列,P1是線段AB的中點,對于給定的公差不為零的an,都能找到唯一的一個bn,使得P1,P2,P3,…,Pn,…,都在一個指數函數
 
(寫出函數的解析式)的圖象上.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點集L={(x,y)|y=
m
n
},其中
m
=(2x-b,1),
n
=(1,b+1),點列Pn(an,bn)(n∈N+)在L中,p1為L與y軸的交點,數列{an}是公差為1的等差數列.
(Ⅰ)求數列{bn}的通項公式;
(Ⅱ)若f(n)=
an,(n為奇數)
bn,(n為偶數)
,令Sn=f(1)+f(2)+f(3)+…+f(n),試寫出Sn關于n的表達式;
(Ⅲ)若f(n)=
an,(n為奇數)
bn,(n為偶數)
,給定奇數m(m為常數,m∈N+,m>2).是否存在k∈N+,,使得
f(k+m)=2f(m),若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點集L={(x,y)|y=
m
n
}
,其中
m
=(2x-b,1),
n
=(1,b+1),點列Pn(an,bn)在L中,P1為L與y軸的交點,等差數列{an}的公差為1,n∈N*
(I)求數列{bn}的通項公式;
(Ⅱ)若f(n)=
an  n為正奇數
bn  n為正偶數
,令Sn=f(1)+f(2)+f(3)+…+f(n);試寫出Sn關于n的函數解析式;

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點集L={(x,y)|y=
m
n
}
,其中
m
=(2x-b,1),
n
=(1,1+b)
,又知點列Pn(an,bn)∈L,P1為L與y軸的交點.等差數列{an}的公差為1,n∈N*
(Ⅰ)求Pn(an,bn);
(Ⅱ)若f(n)=
an,n=2k-1
bn,n=2k
k∈N*,f(k+11)=2f(k)
,求出k的值;
(Ⅲ)對于數列{bn},設Sn是其前n項和,是否存在一個與n無關的常數M,使
Sn
S2n
=M
,若存在,求出此常數M,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點集L={(x,y)|y=
m
n
}
,其中
m
=(2x-b,1),
n
=(1,b+1)
,點列Pn(an,bn)在L中,P1為L與y軸的交點,等差數列{an}的公差為1,n∈N+
(1)求數列{an},{bn}的通項公式;
(2)若f(n)=
an(n=2k-1)
bn(n=2k)
(k∈N+)
,是否存在k∈N+使得f(k+11)=2f(k),若存在,求出k的值;若不存在,請說明理由.
(3)求證:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5
(n≥2,n∈N*).

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩一二三区视频 | 一区二区精品在线 | 成人精品视频在线观看 | 日韩一级黄色大片 | 91精品国产高清久久久久久久久 | 日韩精品一区二区三区在线播放 | 偷拍做爰吃奶视频免费看 | 免费的日本网站 | 一区二区三区免费 | 成人精品一区二区三区中文字幕 | 最新日韩av网址 | 精品在线不卡 | 日日做夜夜爱 | 久久久久91 | 日本一区二区免费看 | 亚洲男人的天堂在线播放 | 十环传奇在线观看完整免费高清 | 色免费视频 | 九色av| 中国妞xxxhd露脸偷拍视频 | av免费网站 | 日韩在线观看毛片 | 亚洲青青 | 色.com| 久国产精品视频 | 亚洲高清一区二区三区 | 成 人 免 费 网 站 | 成人在线免费观看 | 国产精品久久久久久久久免费 | 曰本少妇色xxxxx日本妇 | 欧美一区二区三区在线观看视频 | 夜夜夜久久 | 日韩视频一二 | 新91在线视频 | 成人福利在线 | 久久精品a级毛片 | 亚洲免费视频在线观看 | 成人在线观看一区 | 久久国产一区二区 | 久久久精品免费观看 | 99色影院|