【題目】為了探究某市高中理科生在高考志愿中報考“經濟類”專業是否與性別有關,現從該市高三理科生中隨機抽取50名學生進行調查,得到如下2×2列聯表:(單位:人)
(1)據此樣本,判斷能否在犯錯誤的概率不超過0.001的前提下認為理科生報考“經濟類”專業與性別有關?
(2)若以樣本中各事件的頻率作為概率估計全市總體考生的報考情況,現從該市的全體考生(人數眾多)中隨機抽取3人,設3人中報考“經濟類”專業的人數為隨機變量X,求隨機變量X的概率分布列及數學期望.
附:
,其中n=a+b+c+d.
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C所對應的邊分別為a,b,c,已知b=1,c=2且2cosA(bcosC+ccosB)=a,則A=__________;若M為邊BC的中點,則|AM|=__________
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一塊耕地上種植一種作物,每季種植成本為1000元,此作物的市場價格和這塊地上的產量均具有隨機性,且互不影響,其具體情況如下表:
作物產量(kg) | 300 | 500 |
概率 | 0.5 | 0.5 |
作物市場價格(元/kg) | 6 | 10 |
概率 | 0.4 | 0.6 |
(1)設X表示在這塊地上種植1季此作物的利潤,求X的分布列;
(2)若在這塊地上連續3季種植此作物,求這3季中至少有2季的利潤不少于2000元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點F為拋物線C:x2=2py (p>0) 的焦點,點A(m,3)在拋物線C上,且|AF|=5,若點P是拋物線C上的一個動點,設點P到直線的距離為
,設點P到直線
的距離為
.
(1)求拋物線C的方程;
(2) 求的最小值;
(3)求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的兩個焦點分別為
,
,離心率為
,且橢圓四個頂點構成的菱形面積為
.
(1)求橢圓C的方程;
(2)若直線l :y=x+m與橢圓C交于M,N兩點,以MN為底邊作等腰三角形,頂點為P(3,-2),求m的值及△PMN的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從8名運動員中選4人參加米接力賽,在下列條件下,各有多少種不同的排法?
(1)甲、乙兩人必須入選且跑中間兩棒;
(2)若甲、乙兩人只有一人被選且不能跑中間兩棒;
(3)若甲、乙兩人都被選且必須跑相鄰兩棒;
(4)甲不在第一棒.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知p:方程x2+(m2-6m)y2=1表示雙曲線,q:函數f(x)=x3-mx2+(2m+3)x在(-∞,+∞)上是單調增函數.
(1)若p是真命題,求實數m的取值范圍;
(2)若p或q是真命題,p且q是假命題,求實數m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com