日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
設直線l:y=g(x),曲線S:y=F(x).若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點;②對任意x∈R都有g(x)≥F(x).則稱直線l為曲線S的“上夾線”.
(Ⅰ)已知函數f(x)=x-2sinx.求證:y=x+2為曲線f(x)的“上夾線”.
(Ⅱ)觀察下圖:

根據上圖,試推測曲線S:y=mx-nsinx(n>0)的“上夾線”的方程,并給出證明.
【答案】分析:(Ⅰ)由f'(x)=1-2cosx=1得cosx=0,從而找出直線l與曲線S的兩個切點,從而說明直線l與曲線S相切且至少有兩個切點,然后根據對任意x∈R,g(x)-F(x)≥0,滿足“上夾線”的定義,從而得到結論;
(Ⅱ)推測:y=mx-nsinx(n>0)的“上夾線”的方程為y=mx+n,然后①先檢驗直線y=mx+n與曲線y=mx-nsinx相切,且至少有兩個切點,②檢驗g(x)≥F(x)是否成立,從而得到結論.
解答:解(Ⅰ)由f'(x)=1-2cosx=1得cosx=0,(1分)
當x=-時,cosx=0,
此時,,(2分)
y1=y2,所以()是直線l與曲線S的一個切點;(3分)
當x=時,cosx=0,
此時,,(4分)
y1=y2,,所以()是直線l與曲線S的一個切點;(5分)
所以直線l與曲線S相切且至少有兩個切點;
對任意x∈R,g(x)-F(x)=(x+2)-(x-2sinx)=2+2sinx≥0,
所以g(x)≥F(x)(6分)
因此直線l:y=x+2是曲線S:y=ax+bsinx的“上夾線”.(7分)
(Ⅱ)推測:y=mx-nsinx(n>0)的“上夾線”的方程為y=mx+n(9分)
①先檢驗直線y=mx+n與曲線y=mx-nsinx相切,且至少有兩個切點:設:F(x)=mx-nsinx
∵F'(x)=m-ncosx,令F'(x)=m-ncosx=m,得:x=2kπ±(k∈Z)(10分)
當x=2kπ-時,F(2kπ-)=m(2kπ-)+n
故:過曲線F(x)=mx-nsinx上的點2kπ-,m(2kπ-)+n)的切線方程為:
y-[m(2kπ-)+n]=m[-(2kπ-)],化簡得:y=mx+n.
即直線y=mx+n與曲線y=F(x)=mx-nsinx相切且有無數個切點.(12分)
不妨設g(x)=mx+n
②下面檢驗g(x)≥F(x)
∵g(x)-F(x)=m(1+sinx)≥0(n>0)
∴直線y=mx+n是曲線y=F(x)=mx-nsinx的“上夾線”.(14分)
點評:本題主要考查了函數恒成立問題,以及利用導數研究切線等有關知識,同時考查了轉化與劃歸的思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設直線l:y=g(x),曲線S:y=F(x).若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點;②對任意x∈R都有g(x)≥F(x).則稱直線l為曲線S的“上夾線”.
(Ⅰ)已知函數f(x)=x-2sinx.求證:y=x+2為曲線f(x)的“上夾線”.
(Ⅱ)觀察下圖:
精英家教網
根據上圖,試推測曲線S:y=mx-nsinx(n>0)的“上夾線”的方程,并給出證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=ax+bsinx,當x=
π
3
時,取得極小值
π
3
-
3

(1)求a,b的值;
(2)對任意x1,x2∈[-
π
3
π
3
]
,不等式f(x1)-f(x2)≤m恒成立,試求實數m的取值范圍;
(3)設直線l:y=g(x),曲線S:y=F(x),若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點;②對任意x∈R都有g(x)≥F(x),則稱直線l與曲線S的“上夾線”.觀察下圖:

根據上圖,試推測曲線S:y=mx-nsinx(n>0)的“上夾線”的方程,并作適當的說明.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2008•佛山一模)已知函數f(x)=ax+bsinx,當x=
π
3
時,f(x)取得極小值
π
3
-
3

(1)求a,b的值;
(2)設直線l:y=g(x),曲線S:y=f(x).若直線l與曲線S同時滿足下列兩個條件:
①直線l與曲線S相切且至少有兩個切點;
②對任意x∈R都有g(x)≥f(x).則稱直線l為曲線S的“上夾線”.試證明:直線l:y=x+2為曲線S:y=ax+bsinx“上夾線”.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=ax+bsinx,當x=
π
3
時,f(x)取得極小值
π
3
-
3

(1)求a,b的值;
(2)設直線l:y=g(x),曲線S:y=F(x).若直線l與曲線S同時滿足下列兩個條件:
①直線l與曲線S相切且至少有兩個切點;
②對任意x∈R都有g(x)≥F(x).則稱直線l為曲線S的“上夾線”.
試證明:直線l:y=x+2是曲線S:y=ax+bsinx的“上夾線”.
(3)記h(x)=
1
8
[5x-f(x)]
,設x1是方程h(x)-x=0的實數根,若對于h(x)定義域中任意的x2、x3,當|x2-x1|<1,且|x3-x1|<1時,問是否存在一個最小的正整數M,使得|h(x3)-h(x2)|≤M恒成立,若存在請求出M的值;若不存在請說明理由.

查看答案和解析>>

科目:高中數學 來源:2010-2011學年湖南省衡陽八中高三(上)第二次月考數學試卷(理科)(解析版) 題型:解答題

設直線l:y=g(x),曲線S:y=F(x).若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點;②對任意x∈R都有g(x)≥F(x).則稱直線l為曲線S的“上夾線”.
(Ⅰ)已知函數f(x)=x-2sinx.求證:y=x+2為曲線f(x)的“上夾線”.
(Ⅱ)觀察下圖:

根據上圖,試推測曲線S:y=mx-nsinx(n>0)的“上夾線”的方程,并給出證明.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 一级全毛片 | 国产精品视频一区二区三区四区五区 | 成人免费视频观看视频 | 欧美一区二区三区在线 | 久久综合九色综合欧美狠狠 | 日本午夜视频 | 日韩三级| 久久精品网 | 毛片免费网站 | 欧美日韩高清丝袜 | 免费福利在线 | 99视频在线看 | 小罗莉极品一线天在线 | 国产精品一区二区三区四区 | 欧美高清视频在线观看 | 久久一本 | 欧美全黄 | 日韩精品一区在线 | 久久精品国产清自在天天线 | 精品一区二区网站 | 国产精品一区免费在线观看 | 精品国产乱码简爱久久久久久 | 亚洲综合第一页 | 日本中文在线 | 黄色在线免费观看 | 在线观看www | 又大又粗又长又黄视频 | 成人aaaa| 国产精品久久毛片 | 国产精品国产成人国产三级 | 日本精品一区 | 国产免费视频在线 | 电影午夜精品一区二区三区 | 久久久久久久网站 | 精品超碰 | 亚洲免费视频网址 | 欧美韩一区二区 | 免费黄色网址在线播放 | 国产在线一二 | 女人口述交换啪啪高潮过程 | 综合网视频 |