如圖,已知橢圓的右頂點為A(2,0),點P(2e,
)在橢圓上(e為橢圓的離心率).
(1)求橢圓的方程;
(2)若點B,C(C在第一象限)都在橢圓上,滿足,且
,求實數λ的值.
(1),(2)
.
【解析】
試題分析:(1)求橢圓方程,基本方法是待定系數法.關鍵是找全所需條件. 橢圓中三個未知數的確定只需兩個獨立條件,本題橢圓經過兩點,就是兩個獨立條件,(2)直線與橢圓位置關系問題就要從其位置關系出發,本題中
和
條件一是平行關系,二是垂直關系.設直線
的斜率就可表示點
及點
再利用
就可列出關于斜率及λ的方程組.得到
,可利用類比得到
由
兩式相除可解得
代入可得
試題解析:(1)由條件,代入橢圓方程,
得 2分
所以橢圓的方程為 5分
(2)設直線OC的斜率為,
則直線OC方程為,
代入橢圓方程即
,
得
則 7分
又直線AB方程為
代入橢圓方程
得
則 9分
在第一象限,
12分
由得
15分
16分
考點:橢圓方程,直線與橢圓位置關系.
科目:高中數學 來源:2013-2014學年江蘇蘇州市高三調研測試理科數學試卷(解析版) 題型:解答題
如圖,已知橢圓的右頂點為A(2,0),點P(2e,
)在橢圓上(e為橢圓的離心率).
(1)求橢圓的方程;
(2)若點B,C(C在第一象限)都在橢圓上,滿足,且
,求實數λ的值.
查看答案和解析>>
科目:高中數學 來源:2010年高考試題分項版理科數學之專題五平面向量 題型:解答題
(16分)在平面直角坐標系中,如圖,已知橢圓
的左右頂點為A,B,右頂點為F,設過點T(
)的直線TA,TB與橢圓分別交于點M
,
,其中m>0,
①設動點P滿足,求點P的軌跡
②設,求點T的坐標
③設,求證:直線MN必過x軸上的一定點
(其坐標與m無關)
查看答案和解析>>
科目:高中數學 來源:2010年高考試題分項版理科數學之專題三數列 題型:解答題
(16分)在平面直角坐標系中,如圖,已知橢圓
的左右頂點為A,B,右頂點為F,設過點T(
)的直線TA,TB與橢圓分別交于點M
,
,其中m>0,
①設動點P滿足,求點P的軌跡
②設,求點T的坐標
③設,求證:直線MN必過x軸上的一定點
(其坐標與m無關)
查看答案和解析>>
科目:高中數學 來源:2010年普通高等學校招生全國統一考試(重慶卷)數學理工類模擬試卷(三) 題型:解答題
如圖,已知橢圓的右焦點為F,過F的直線(非x軸)交橢圓于M、N兩點,右準線
交x軸于點K,左頂點為A.
(Ⅰ)求證:KF平分∠MKN;
(Ⅱ)直線AM、AN分別交準線于點P、Q,
設直線MN的傾斜角為,試用
表示
線段PQ的長度|PQ|,并求|PQ|的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com