【題目】《中華人民共和國道路交通安全法》第47條的相關規定:機動車行經人行橫道時,應當減速慢行;遇行人正在通過人行橫道,應當停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國道路交通安全法》 第90條規定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監控設備所抓拍的5個月內駕駛員不“禮 讓斑馬線”行為統計數據:
(1)請利用所給數據求違章人數與月份
之間的回歸直線方程
;
(2)預測該路口 9月份的不“禮讓斑馬線”違章駕駛員人數;
(3)若從表中3、4月份分別抽取4人和2人,然后再從中任選2 人進行交規調查,求抽到的兩人恰好來自同一月份的概率.
參考公式:
,
.
科目:高中數學 來源: 題型:
【題目】某學校為了調查高一年級學生的體育鍛煉情況,從甲、乙、丙3個班中,按分層抽樣的方法獲得了部分學生一周的鍛煉時間(單位:h),數據如下,
甲 | 6 | 6.5 | 7 | 7.5 | 8 | |||
乙 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
丙 | 3 | 4.5 | 6 | 7.5 | 9 | 10.5 | 12 | 13.5 |
(1)求三個班中學生人數之比;
(2)估計這個學校高一年級學生中,一周的鍛煉時間超過10h的百分比;
(3)估計這個學校高一年級學生一周的平均鍛煉時間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點P(0,-2),橢圓E: 的離心率為
,F是橢圓E的右焦點,直線PF的斜率為2,O為坐標原點.
(1)求橢圓E的方程;
(2)直線l被圓O:x2+y2=3截得的弦長為3,且與橢圓E交于A、B兩點,求△AOB面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為考察某種藥物預防疾病的效果,進行動物試驗,得到如下藥物效果與動物試驗列聯表:
患病 | 未患病 | 總計 | |
服用藥 | 10 | 45 | 55 |
沒服用藥 | 20 | 30 | 50 |
總計 | 30 | 75 | 105 |
經過計算,,根據這一數據分析,下列說法正確的是
臨界值表供參考:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A. 有97.5%的把握認為服藥情況與是否患病之間有關系
B. 有99%的把握認為服藥情況與是否患病之間有關系
C. 有99.5%的把握認為服藥情況與是否患病之間有關系
D. 沒有理由認為服藥情況與是否患病之間有關系
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某投資商到邢臺市高開區投資萬元建起一座汽車零件加工廠,第一年各種經費
萬元,以后每年增加
萬元,每年的產品銷售收入
萬元.
(Ⅰ)若扣除投資及各種費用,則該投資商從第幾年起開始獲取純利潤?
(Ⅱ)若干年后,該投資商為投資新項目,需處理該工廠,現有以下兩種處理方案:① 年平均利潤最大時,以萬元出售該廠;
② 純利潤總和最大時,以萬元出售該廠.
你認為以上哪種方案最合算?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某次人才招聘會上,假定某畢業生贏得甲公司面試機會的概率為,贏得乙、丙兩公司面試機會的概率均為
,且三家公司是否讓其面試是相互獨立的,則該畢業生只贏得甲、乙兩家公司面試機會的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點,
為橢圓
:
上異于點A,B的任意一點.
(Ⅰ)求證:直線、
的斜率之積為
-;
(Ⅱ)是否存在過點的直線
與橢圓
交于不同的兩點
、
,使得
?若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知的三個頂點
,
,
,其外接圓為
.對于線段
上的任意一點
,
若在以為圓心的圓上都存在不同的兩點
,使得點
是線段
的中點,則
的半徑
的取值范圍__________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com