日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=loga|x-t|,(a>0,a≠1)的圖象如圖,則下列結論正確的是(  )
分析:根據函數的圖象關于直線x=1對稱,可得t=1.根據函數在(1,+∞)上是增函數,可得a>1,從而得出結論.
解答:解:由函數f(x)=loga|x-t|,(a>0,a≠1)的圖象可得,函數的圖象關于直線x=1對稱,故t=1.
再由圖象可得,函數在(1,+∞)上是增函數,故a>1,
故選B.
點評:本題主要考查對數函數的圖象和性質的綜合應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2+2|lnx-1|.
(1)求函數y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當x≥e時,對于函數f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數列{
1
f(n)
}的前n項和為Sn,則S2012的值為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=xlnx
(Ⅰ)求函數f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數a的不同取值,寫出該函數的單調增區間;
(2)已知當x>0時,函數在(0,
6
)上單調遞減,在(
6
,+∞)上單調遞增,求a的值并寫出函數的解析式;
(3)記(2)中的函數圖象為曲線C,試問是否存在經過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 真实国产露脸乱 | 国产探花在线精品一区二区 | 欧美日韩在线观看一区二区三区 | 日本久久久久久 | 99精品免费久久 | 亚洲免费在线观看 | 日韩国产欧美一区 | 羞羞视频在线免费观看 | 国产精品98 | 欧美xxxx做受欧美 | 日本在线观看不卡 | 黄a网站 | 精品在线视频观看 | 国产精品久久 | 久久99视频 | 91亚洲成人 | 国外成人在线视频 | 亚洲乱码久久久 | 亚洲一级生活片 | 国产ts余喵喵和直男多体位 | 午夜视频 | 九色在线观看视频 | 国产亚洲欧美在线 | 欧美综合一区 | 在线国产一区二区 | 久久久久久久久久久久免费 | 再深点灬舒服灬太大了添少妇视频 | 91在线精品一区二区三区 | 久久久精品网 | 激情999| 日韩一区二区不卡 | 黄色毛片免费看 | 精品国产欧美一区二区三区成人 | 国产精品99久久免费观看 | 日韩精品一区二区三区第95 | 久久精品网| 欧美一区二区三区在线看 | 一区二区三区在线 | 无套内谢孕妇毛片免费看红桃影视 | 四虎影视网址 | 国产精品96久久久久久久 |