日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
12.設p:實數x滿足:x2-4ax+3a2<0(a>0),q:實數x滿足:x=($\frac{1}{2}$)m-1,m∈(1,2).
(Ⅰ)若a=$\frac{1}{4}$,且p∧q為真,求實數x的取值范圍;
(Ⅱ)q是p的充分不必要條件,求實數a的取值范圍.

分析 (Ⅰ)將a=$\frac{1}{4}$代入求出p為真時,x的范圍,由指數函數的圖象和性質,求出q為真時,x的范圍,再由p∧q為真,求出兩個范圍的交集,可得實數x的取值范圍;
(Ⅱ)p是q的必要不充分條件,即$\left\{\begin{array}{l}a≤\frac{1}{2}\\ 3a≥1\end{array}\right.$,解得實數a的取值范圍.

解答 解:(I)p:a<x<3a(a>0),
$a=\frac{1}{4}$時,$p:\frac{1}{4}<x<\frac{3}{4}$…(1分)$q:\frac{1}{2}<x<1$…(2分)
∵p∧q為真
∴p真且q真                            …(3分)
∴$\left\{\begin{array}{l}\frac{1}{4}<x<\frac{3}{4}\\ \frac{1}{2}<x<1\end{array}\right.$,得$\frac{1}{2}<x<\frac{3}{4}$,
即實數x的取值范圍為$\left\{{x\left|{\frac{1}{2}<x<\frac{3}{4}}\right.}\right\}$…(5分)
(II)q是p的充分不必要條件,記$A=\left\{{x\left|{\frac{1}{2}<x<1}\right.}\right\}$,B={x|a<x<3a,a>0}
則A是B的真子集                                      …(7分)
∴$\left\{\begin{array}{l}a=\frac{1}{2}\\ 3a>1\end{array}\right.$或$\left\{\begin{array}{l}a<\frac{1}{2}\\ 3a≥1\end{array}\right.$…(9分)
得$\frac{1}{3}≤a≤\frac{1}{2}$,即a的取值范圍為$[{\frac{1}{3},\frac{1}{2}}]$…(10分)

點評 本題以命題的真假判斷與應用為載體,考查了復合命題,二次不等式的解法,指數函數的圖象和性質,難度中檔.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

2.如圖,當輸入的x值為3時,輸出y的結果是12.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.已知集合A={x|-1≤x≤2},B={|x|x<1},則A∪(∁RB)等于(  )
A.{x|x≥1}B.{x|x≥-1}C.{x|-1≤x≤2}D.{x|1≤x≤2}

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.已知1<x<10,a=lgx2,b=lg(lgx),c=(lgx)2,那么有(  )
A.c>a>bB.c>b>aC.a>c>bD.a>b>c

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.在△ABC中,a,b,c分別為內角A,B,C所對的邊,若a=$\sqrt{3}$,A=$\frac{π}{3}$,則b+c的最大值為(  )
A.4B.3$\sqrt{3}$C.2$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.已知f(x)=$\left\{\begin{array}{l}{cos\frac{πx}{2},x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$,則f(2)=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-3D.3

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.在△ABC中,a,b,c是角A,B,C對應的邊,向量$\overrightarrow{m}$=(a+b,-c),$\overrightarrow{n}$=(a+b,c),且$\overrightarrow{m}$•$\overrightarrow{n}$=(2+$\sqrt{3}$)ab.
(1)求角C
(2)函數f(x)=2sin(A+B)cos2(ωx)-cos(A+B)sin(2ωx)-$\frac{1}{2}$(ω>0)的相鄰兩條對稱軸分別為x=x0,x=x0+$\frac{π}{2}$,求f(x)在區間[-π,π]上的單調遞增區間.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.已知函數f(x)=2x+x-5,那么方程f(x)=0的解所在區間是(n,n+1),則n=1.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.已知函數f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤$\frac{π}{2}}$),其圖象與直線y=-1相鄰兩個交點的距離為π,若f(x)>1對?x∈(-$\frac{π}{12}$,$\frac{π}{3}}$)恒成立,則φ的取值范圍是(  )
A.$[{\frac{π}{12},\frac{π}{6}}]$B.$[{\frac{π}{6},\frac{π}{2}}]$C.$[{\frac{π}{12},\frac{π}{3}}]$D.$[{\frac{π}{6},\frac{π}{3}}]$

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 狠狠艹av | 精品国产欧美一区二区三区不卡 | 国产精品亲子伦av一区二区三区 | 欧美久久影视 | 国产成人精品久久二区二区91 | 欧美蜜桃精品久久久久久 | 亚洲免费成人 | 欧美视频在线免费 | 国产一区二区高清视频 | 日韩精品一区二区三区在线观看 | 一级毛片视屏 | 亚洲视频中文字幕 | 91精品中文字幕一区二区三区 | 日本高清中文字幕 | 成人免费视屏 | 日韩精品一区二区三区免费观看视频 | 亚洲男人av | 成人在线小视频 | 国产小视频在线观看 | 欧美日韩综合精品 | 一二三区不卡视频 | 精品欧美一区二区三区久久久小说 | 自拍偷拍专区 | 久久综合社区 | 特级淫片女子高清视频在线观看 | 黄色污网站 | 国产精品久久精品 | 色噜噜久久 | 欧美午夜网 | 亚洲成人福利在线观看 | 日本一区二区不卡视频 | 欧美成人在线免费观看 | 久久国产精品久久久久久电车 | 久草视频在线资源站 | 久久综合一区 | 天天干人人干 | 国产美女在线观看精品 | 欧美视频网站 | 亚洲91| 国产日韩中文字幕 | а天堂中文最新一区二区三区 |