日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
(2013•煙臺二模)已知f(x)=
1
4
x2+sin(
π
2
+x)
,f′(x)為f(x)的導函數,則f′(x)的圖象是(  )
分析:先化簡f(x)=
1
4
x2+sin(
π
2
+x)
=
1
4
x2+cosx,再求其導數,得出導函數是奇函數,排除B,D.再根據導函數的導函數小于0的x的范圍,確定導函數(-
π
3
π
3
)上單調增減,從而排除C,即可得出正確答案.
解答:解:由f(x)=
1
4
x2+sin(
π
2
+x)
=
1
4
x2+cosx,
∴f'(x)=
1
2
x-sinx,它是一個奇函數,其圖象關于原點對稱,故排除B,D.
又f''(x)=
1
2
-cosx,當-
π
3
<x<
π
3
時,cosx>
1
2
,∴f''(x)<0,
故函數y=f'(x)在區間(-
π
3
π
3
)上單調遞減;
故排除C.
故選A.
點評:本題主要考查函數的單調性與其導函數的正負之間的關系,即當導函數大于0時原函數單調遞增,當導函數小于0時原函數單調遞減.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•煙臺二模)在等差數列{an}中,a1=3,其前n項和為Sn,等比數列{bn}的各項均為正數,b1=1,公比為q,且b2+S2=12.q=
S2
b2

(Ⅰ)求an與bn
(Ⅱ)設數列{cn}滿足cn=
1
Sn
,求的{cn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•煙臺二模)已知二次函數f(x)=ax2+bx+c的導函數f′(x)滿足:f′(0)>0,若對任意實數x,有f(x)≥0,則
f(1)
f′(0)
的最小值為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•煙臺二模)設p:f(x)=lnx+2x2+mx+1在(0,+∞)內單調遞增,q:m≥-5,則p是q的(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•煙臺二模)將函數f(x)=3sin(4x+
π
6
)圖象上所有點的橫坐標伸長到原來的2倍,再向右平移
π
6
個單位長度,得到函數y=g(x)的圖象,則y=g(x)圖象的一條對稱軸是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•煙臺二模)已知i為虛數單位,復數z=
1-2i
2-i
,則復數z的虛部是(  )

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲一区二区三区视频 | 色噜噜视频 | 日韩av一区二区在线观看 | 日本成人黄色 | 欧美xxxⅹ性欧美大片 | 久久伦理电影 | 亚洲国产精品一区二区久久 | 久久网av| 一本岛在线视频 | 国产一区二区三区在线免费观看 | 成人在线播放 | 91一区| 久草在线 | www久久久 | 日本三级视频在线观看 | 日韩亚洲视频 | 成年免费视频 | 91视频网址| 亚洲码欧美码一区二区三区 | 午夜国产视频 | 日韩大片免费观看视频播放 | www亚洲成人 | 日日摸日日爽 | 久草视频在线播放 | 久久久精彩视频 | 欧美一区2区三区4区公司二百 | 国产成人午夜视频 | 精品日韩一区二区三区 | 在线中文字幕视频 | ririsao亚洲国产中文 | 欧美在线观看一区 | 精品2区| 成人精品视频 | 国产精品视频免费看 | 日韩欧美一区二区三区久久婷婷 | 激情欧美日韩一区二区 | 久久成人国产 | 亚洲一区日韩 | 十环传奇在线观看完整免费高清 | www.久久| 国产美女永久免费无遮挡 |