【題目】已知a,b,c均為正數,設函數f(x)=|x﹣b|﹣|x+c|+a,x∈R.
(1)若a=2b=2c=2,求不等式f(x)<3的解集;
(2)若函數f(x)的最大值為1,證明:.
【答案】(1).(2)見解析
【解析】
(1)根據a=2b=2c=2時,將不等式f(x)<3化為|x﹣1|﹣|x+1|<1,然后利用零點分段法解不等式即可;
(2)根據條件利用絕對值三角不等式,可得a+b+c=1,然后利用柯西不等式,即可證明.
(1)當a=2b=2c=2時,a=2,b=c=1
不等式f(x)<3化為|x﹣1|﹣|x+1|<1,
當x≤﹣1時,原不等式化為1﹣x+1+x<1,解集為;
當﹣1<x<1時,原不等式化為1﹣x﹣x﹣1<1,解得;
當x≥1時,原不等式化為x﹣1﹣x﹣1<1,解得x≥1,
∴不等式f(x)<3的解集為.
(2)∵
又∵a,b,c>0,
∴
∴
當且僅當,即
時等號成立,
∴.
科目:高中數學 來源: 題型:
【題目】已知橢圓C:(
)的左右焦點分別為
,點
滿足:
,且
.
(1)求橢圓C的標準方程;
(2)過點的直線l與C交于
,
不同的兩點,且
,問在x軸上是否存在定點N,使得直線
,
與y軸圍成的三角形始終為底邊在y軸上的等腰三角形.若存在,求定點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】袋子有5個不同的小球,編號分別為1,2,3,4,5,從袋中一次取出三個球,記隨機變量是取出球的最大編號與最小編號的差,數學期望為
,方差為
則下列選項正確的是( )
A.,
B.
,
C.,
D.
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著生活節奏的加快以及智能手機的普及,外賣點餐逐漸成為越來越多用戶的餐飲消費習慣,由此催生了一批外賣點餐平臺.已知某外賣平臺的送餐費用與送餐距離有關(該平臺只給5千米范圍內配送),為調査送餐員的送餐收入,現從該平臺隨機抽取100名點外賣的用戶進行統計,按送餐距離分類統計結果如表:
送餐距離(千米) | (0,1] | (1,2] | (2,3] | (3,4] | (4,5] |
頻數 | 15 | 25 | 25 | 20 | 15 |
以這100名用戶送餐距離位于各區間的頻率代替送餐距離位于該區間的概率.
(1)若某送餐員一天送餐的總距離為100千米,試估計該送餐員一天的送餐份數;(四舍五入精確到整數,且同一組中的數據用該組區間的中點值為代表).
(2)若該外賣平臺給送餐員的送餐費用與送餐距離有關,規定2千米內為短距離,每份3元,2千米到4千米為中距離,每份7元,超過4千米為遠距離,每份12元.記X為送餐員送一份外賣的收入(單位:元),求X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖①:在平行四邊形中,
,
,將
沿對角線
折起,使
,連結
,得到如圖②所示三棱錐
.
(1)證明:平面
;
(2)若,二面角
的平面角的正切值為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市對一項惠民市政工程滿意程度(分值:分)進行網上調查,有2000位市民參加了投票,經統計,得到如下頻率分布直方圖(部分圖):
現用分層抽樣的方法從所有參與網上投票的市民中隨機抽取位市民召開座談會,其中滿意程度在
的有5人.
(1)求的值,并填寫下表(2000位參與投票分數和人數分布統計);
滿意程度(分數) | |||||
人數 |
(2)求市民投票滿意程度的平均分(各分數段取中點值);
(3)若滿意程度在的5人中恰有2位為女性,座談會將從這5位市民中任選兩位發言,求男性甲或女性乙被選中的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】高鐵是我國國家名片之一,高鐵的修建凝聚著中國人的智慧與汗水.如圖所示,B、E、F為山腳兩側共線的三點,在山頂A處測得這三點的俯角分別為、
、
,計劃沿直線BF開通穿山隧道,現已測得BC、DE、EF三段線段的長度分別為3、1、2.
(1)求出線段AE的長度;
(2)求出隧道CD的長度.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com