【題目】已知橢圓的上頂點為
,以
為圓心橢圓的長半軸為半徑的圓與
軸的交點分別為
,
.
(1)求橢圓的標準方程;
(2)設不經過點的直線
與橢圓
交于
,
兩點,且
,試探究直線
是否過定點?若過定點,求出該定點的坐標,若不過定點,請說明理由.
科目:高中數學 來源: 題型:
【題目】本小題滿分13分)
工作人員需進入核電站完成某項具有高輻射危險的任務,每次只派一個人進去,且每個人只派一次,工作時間不超過10分鐘,如果有一個人10分鐘內不能完成任務則撤出,再派下一個人.現在一共只有甲、乙、丙三個人可派,他們各自能完成任務的概率分別,假設
互不相等,且假定各人能否完成任務的事件相互獨立.
(1)如果按甲在先,乙次之,丙最后的順序派人,求任務能被完成的概率.若改變三個人被派出的先后順序,任務能被完成的概率是否發生變化?
(2)若按某指定順序派人,這三個人各自能完成任務的概率依次為,其中
是
的一個排列,求所需派出人員數目
的分布列和均值(數字期望)
;
(3)假定,試分析以怎樣的先后順序派出人員,可使所需派出的人員數目的均值(數字期望)達到最。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,,過動點
作
,垂足
在線段
上且異于點
,連接
,沿
將
折起,使
(如圖2所示),
(1)當的長為多少時,三棱錐
的體積最大;
(2)當三棱錐的體積最大時,設點
分別為棱
的中點,試在棱
上確定一點
,使得
,并求
與平面
所成角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知拋物線和
,過拋物線
上一點
作兩條直線與
分別相切于
兩點,分別交拋物線于
兩點.
(1)當的角平分線垂直
軸時,求直線
的斜率;
(2)若直線在
軸上的截距為
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著經濟的發展,個人收入的提高,自2019年1月1日起,個人所得稅起征點和稅率作了調整.調整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應納稅所得額.依照個人所得稅稅率表,調整前后的計算方法如表:
個人所得稅稅率表 | 個人所得稅稅率表 | ||||
免征額3500元 | 免征額5000元 | ||||
級數 | 全月應納稅所得額 | 稅率 | 級數 | 全月應納稅所得額 | 稅率 |
1 | 不超過1500元部分 | 3 | 1 | 不超過3000元部分 | 3 |
2 | 超過1500元至4500元的部分 | 10 | 2 | 超過3000元至12000元的部分 | 10 |
3 | 超過4500元至9000元的部分 | 20 | 3 | 超過12000元至25000元的部分 | 20 |
(1)假如小明某月的工資、薪金等稅前收入為7500元,請你幫小明算一下調整后小明的實際收入比調整前增加了多少?
(2)某稅務部門在小明所在公司利用分層抽樣方法抽取某月100個不同層次員工的稅前收入,并制成下面的頻數分布表:
收入 | ||||||
人數 | 40 | 30 | 10 | 8 | 7 | 5 |
先從收入在及
的人群中按分層抽樣抽取7人,再從中選3人作為新納稅法知識宣講員,用隨機變量X表示抽到作為宣講員的收入在
元的人數,求X的分布列與數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com