【題目】已知向量 =(sinA,cosA),
=(cosB,sinB),
=sin2C且A、B、C分別為△ABC的三邊a,b,c所對的角.
(1)求角C的大小;
(2)若sinA,sinC,sinB成等比數列,且 =18,求c的值..
【答案】
(1)解:∵ =sin2C
∴sinAcosB+sinBcosA=sin2C
∴sin(A+B)=sinC=sin2C=2sinCcosC
∵sinC≠0
∴cosC=
∵C∈(0,π)
∴
(2)解:∵sinA,sinB,sinB成等比數列,
∴sin2C=sinAsinB
由正弦定理可得c2=ab
∵ =18,
∴ =
=18,
∴ab=36
∴c2=36,c=6
【解析】(1)由 =sin2C,結合向量的數量積的坐標表示及兩角和的正弦公式可求cosC,進而可求C(2)由已知可得,sin2C=sinAsinB,結合正弦定理可得c2=ab,再由向量的數量積的定義可求ab,進而可求c
【考點精析】利用等比數列的通項公式(及其變式)和正弦定理的定義對題目進行判斷即可得到答案,需要熟知通項公式:;正弦定理:
.
科目:高中數學 來源: 題型:
【題目】定義:如果函數y=f(x)在定義域內給定區間[a,b]上存在x0(a<x0<b),滿足f(x0)= ,則稱函數y=f(x)是[a,b]上的“平均值函數”,x0是它的一個均值點.例如y=|x|是[﹣2,2]上的平均值函數,0就是它的均值點.若函數f(x)=x2﹣mx﹣1是[﹣1,1]上的“平均值函數”,則實數m的取值范圍是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}的前n項和為Sn , 對任意的正整數n,都有an=5Sn+1成立,記bn= (n∈N*).
(1)求數列{an}和數列{bn}的通項公式;
(2)設數列{bn}的前n項和為Rn , 求證:對任意的n∈N* , 都有Rn<4n;
(3)記cn=b2n﹣b2n﹣1(n∈N*),設數列{cn}的前n項和為Tn , 求證:對任意n∈N* , 都有Tn< .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正方形ABCD的頂點坐標分別為A(0,1),B(2,0),C(3,2).
(1)求CD邊所在直線的方程;
(2)求以AC為直徑的圓M的標準方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,菱形ABCD的邊長為2,△BCD為正三角形,現將△BCD沿BD向上折起,折起后的點C記為C′,且CC′= ,連接CC′,E為CC′的中點.
文科:
(1)求證:AC′∥平面BDE;
(2)求證:CC′⊥平面BDE;
(3)求三棱錐C′﹣BCD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知A、B、C為△ABC的三個內角,且其對邊分別為a、b、c,若cosBcosC﹣sinBsinC= .
(1)求角A;
(2)若a=2 ,b+c=4,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列四個命題中,正確的有( ) ①兩個變量間的相關系數r越小,說明兩變量間的線性相關程度越低;
②命題“x∈R,使得x2+x+1<0”的否定是:“對x∈R,均有x2+x+1>0”;
③命題“p∧q為真”是命題“p∨q為真”的必要不充分條件;
④若函數f(x)=x3+3ax2+bx+a2在x=﹣1有極值0,則a=2,b=9或a=1,b=3.
A.0 個
B.1 個
C.2 個
D.3個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com