日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
對于三次函數f(x)=ax3+bx2+cx+d(a≠0),定義f′(x)是y=f(x)的導函數y=f′(x)的導函數,若方程f′(x)=0有實數解x,則稱點(x,f(x))為函數y=f(x)的“拐點”,可以發現,任何三次函數都有“拐點”,任何三次函數都有對稱中心,且“拐點”就是對稱中心,請你根據這一發現判斷下列命題:
①任意三次函數都關于點(-,f(-))對稱:
②存在三次函數f′(x)=0有實數解x,點(x,f(x))為麵y=f(x)的對稱中心;
③存在三次函數有兩個及兩個以上的對稱中心;
④若函數g(x)=x3-x2-,則,g()+g()+g()+…+g()=-105.5.
其中正確命題的序號為    (把所有正確命題的序號都填上).
【答案】分析:①根據函數f(x)的解析式求出f′(x)和f″(x),令f″(x)=0,求得x的值,由此求得三次函數f(x)=ax3+bx2+cx+d(a≠0)的對稱中心;
②③利用三次函數對稱中心的定義和性質進行判斷;
④由g(x)=x3-x2-的對稱中心是(),得g(x)+(g(1-x)=-1,由此能求出g()+g()+g()+…+g().
解答:解:∵f(x)=ax3+bx2+cx+d(a≠0),
∴f′(x)=3ax2+2bx+c,f''(x)=6ax+2b,

∴任意三次函數都關于點(-,f(-))對稱,即①正確;
∵任何三次函數都有對稱中心,且“拐點”就是對稱中心,
∴存在三次函數f′(x)=0有實數解x,點(x,f(x))為y=f(x)的對稱中心,即②正確;
任何三次函數都有且只有一個對稱中心,故③不正確;
∵g(x)=x3-x2-
∴g′(x)=x2-x,g''(x)=2x-1,
令g''(x)=2x-1=0,得x=
∵g()==-
∴函數g(x)=x3-x2-的對稱中心是(),
∴g(x)+(g(1-x)=-1,
∴g()+g()+g()+…+g()=-105.5,故④正確.
故答案為:①②④.
點評:本小題主要考查函數與導數等知識,考查化歸與轉化的數學思想方法,考查化簡計算能力,求函數的值以及函數的對稱性的應用,屬于難題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

對于三次函數f(x)=ax3+bx2+cx+d(a≠0).
定義:(1)設f″(x)是函數y=f(x)的導數y=f′(x)的導數,若方程f″(x)=0有實數解x0,則稱點(x0,f(x0))為函數y=f(x)的“拐點”;
定義:(2)設x0為常數,若定義在R上的函數y=f(x)對于定義域內的一切實數x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數y=f(x)的圖象關于點(x0,f(x0))對稱.
己知f(x)=x3-3x2+2x+2,請回答下列問題:
(1)求函數f(x)的“拐點”A的坐標
 

(2)檢驗函數f(x)的圖象是否關于“拐點”A對稱,對于任意的三次函數寫出一個有關“拐點”的結論
 

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•昌平區二模)對于三次函數f(x)=ax3+bx2+cx+d(a≠0),給出定義:設f′(x)是函數y=f(x)的導數,f″(x)是函數f′(x)的導數,若方程f″(x)=0有實數解x0,則稱(x0,f(x0))為函數y=f(x)的“拐點”.某同學經過探究發現:任何一個三次函數都有“拐點”;任何一個三次函數都有對稱中心,且“拐點”就是對稱中心.給定函數f(x)=
1
3
x3-
1
2
x2+3x-
5
12
,請你根據上面探究結果,解答以下問題
(1)函數f(x)=
1
3
x3-
1
2
x2+3x-
5
12
的對稱中心為
1
2
,1)
1
2
,1)

(2)計算f(
1
2013
)+f(
2
2013
)+f(
3
2013
)
+…+f(
2012
2013
)=
2012
2012

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•房山區二模)對于三次函數f(x)=ax3+bx2+cx+d(a≠0),給出定義:設f′(x)是函數y=f(x)的導數,f″(x)是f′(x)的導數,若方程f″(x)=0有實數解x0,則稱點(x0,f(x0))為函數y=f(x)的“拐點”.某同學經過探究發現:任何一個三次函數都有“拐點”;任何一個三次函數都有對稱中心,且拐點就是對稱中心.若f(x)=
1
3
x3-
1
2
x2+
1
6
x+1
,則該函數的對稱中心為
(
1
2
,1)
(
1
2
,1)
,計算f(
1
2013
)+f(
2
2013
)+f(
3
2013
)+…+f(
2012
2013
)
=
2012
2012

查看答案和解析>>

科目:高中數學 來源: 題型:

對于三次函數f(x)=ax3+bx2+cx+d(a≠0),定義:設f''(x)是函數y=f(x)的導數f′(x)的導數,若方程f''(x)=0有實數解x0,則稱點(x0,f(x0))為函數y=f(x)的“拐點”.有同學發現“任何一個三次函數都有‘拐點’;任何一個三次函數都有對稱中心”,且‘拐點’就是對稱中心.請你將這一發現作為條件.
(1).函數f(x)=x3-3x2+3x的對稱中心為
(1,2)
(1,2)

(2).若函數g(x)=
1
3
x3-
1
2
x2+3x-
5
12
+
1
x-
1
2
,則g(
1
2013
)+g(
2
2013
)+g(
3
2013
)+…+g(
2012
2013
)
=
2012
2012

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•安慶三模)對于三次函數f(x)-ax3+bx2+cx+d(a≠0),給出定義:設ft(x)是函數y=f(x)的導數,ftt(x)是函數ft的導數,若方程ftt(x)=0有實數解x0,則稱點(x0,f(x0))為函數y=f(x)的“拐點”.某同學經過探究發現:任何一個一元三次函數都有“拐點”;且該“拐點”也為該函數的對稱中心.若f(x)=x3-
3
2
x2+
1
2
x+1,則f(
1
2014
)+f(
2
2014
)+…+f(
2013
2014
)=(  )

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 一级片欧美 | 成人黄色在线看 | 黄色大片视频网站 | 午夜精品网站 | 国产精品久久 | 成年人在线视频播放 | 国产精品一区二区麻豆 | 欧美一区二区三区在线 | 国产精品一线二线三线 | 在线免费一级片 | 亚洲免费网| 日本不卡高清视频 | 成人午夜毛片 | 国产极品美女在线精品图片 | 一区二区精品 | 激情欧美日韩一区二区 | 久久综合一区二区三区 | 成人免费一区二区三区 | 日本一区二区成人 | 日韩成人在线免费视频 | 欧美日韩一 | 日韩在线观看 | 日本黄色大片免费 | 夜夜夜操操操 | 成人免费视频在线观看 | 精品国产91久久久久久久 | 日本午夜一区二区 | 久操草 | 国产欧美日韩中文字幕 | 精品久久久久久国产 | 国产中文字幕在线 | 国产91精品在线 | 999热在线 | 日韩91| 亚洲日韩欧美一区二区在线 | 一区二区三区四区日韩 | 亚洲精品乱码久久久久久 | 中文字幕亚洲一区二区三区 | 亚洲男人的天堂在线播放 | 久久综合一区二区三区 | 亚洲国产成人在线 |