日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

【題目】解答
(1)已知a,b為正整數,a≠b,x>0,y>0.試比較 + 的大小,并指出兩式相等的條件.
(2)用(1)所得結論,求函數y= + ,x∈(0, )的最小值.

【答案】
(1)解:a,b為正整數,a≠b,x>0,y>0,

可得(x+y)( + )=a2+b2+ +

≥a2+b2+2 =a2+b2+2ab=(a+b)2

即有 + ,當且僅當ay=bx時取得等號


(2)解:函數y= + ,x∈(0,

即為y= +

由(1)可得 + =25.

當且僅當6x=3(1﹣3x),即x= 時,取得最小值25


【解析】(1)展開(x+y)( + )=a2+b2+ + ,再由基本不等式可得 + 的大小和等號成立的條件;(2)將函數y= + ,x∈(0, )化為y= + ,即可運用第一題的結論,求得最小值.
【考點精析】本題主要考查了基本不等式的相關知識點,需要掌握基本不等式:,(當且僅當時取到等號);變形公式:才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=﹣x2+4x+a,x∈[0,1],若f(x)有最小值﹣2,則f(x)的最大值為(
A.1
B.0
C.﹣1
D.2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】己知函數f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),a>0,且a≠1.
(1)若1是關于x的方程f(x)﹣g(x)=0的一個解,求t的值;
(2)當0<a<1且t=﹣1時,解不等式f(x)≤g(x);
(3)若函數F(x)=af(x)+tx2﹣2t+1在區間(﹣1,2]上有零點,求t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)對定義域R內的任意x都有f(x)=f(4﹣x),且當x≠2時其導函數f′(x)滿足(x﹣2)f′(x)>0,若2<a<4則(  )
A.f(2a)<f(3)<f(log2a)
B.f(log2a)<f(3)<f(2a
C.f(3)<f(log2a)<f(2a
D.f(log2a)<f(2a)<f(3)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設關于x的方程x2+px﹣12=0和x2+qx+r=0的解集分別是A,B,且A≠B.A∪B={﹣3,2,4},A∩B={﹣3}.求p,q,r的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數是R上的奇函數,且的圖象關于對稱,當時,

(Ⅰ)當 時,求的解析式;

(Ⅱ)計算的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設復數z=a+i(i是虛數單位,a∈R,a>0),且|z|=
(Ⅰ)求復數z;
(Ⅱ)在復平面內,若復數+(m∈R)對應的點在第四象限,求實數m取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2﹣2ax+a﹣1在區間[0,1]上有最小值﹣2,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中為實數.

)當時,求函數上的最大值和最小值;

)求函數的單調遞增區間.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲天堂一区二区 | 四影虎影ww4hu55.com | 一级毛片视频 | 久久久久国产精品午夜一区 | 日韩在线观看一区二区三区 | 91中文字幕在线 | 亚洲精品久久久久久久久久久久久 | 欧美亚洲国产一区 | 国产精品乱码久久久久久 | 免费a视频在线 | 欧美性网 | 国产99久久精品一区二区永久免费 | 91精选国产 | www.亚洲| 欧美一区二区三区视频 | 精品999| 欧美一级欧美三级在线观看 | 亚洲成人av一区二区三区 | 久久精品亚洲欧美日韩精品中文字幕 | 久久久久久亚洲精品中文字幕 | 奇米影视首页 | 成人欧美一区二区三区黑人孕妇 | 中文字幕视频在线观看 | 亚洲精品视频播放 | 欧美亚洲日本一区 | 久久av网 | 精品三级 | 黄色三及毛片 | 91精品国产综合久久久蜜臀粉嫩 | 欧美在线视频一区二区 | 国产视频精品一区二区三区 | 在线欧美日韩 | 久久久久极品 | 中文字幕一区二区三区乱码图片 | 欧美激情在线播放 | 日韩一区二区在线观看 | 亚洲精品国产99 | 久久久久久九九 | 在线播放国产精品 | 天天干天天操 | 欧美日韩综合视频 |