【題目】已知a∈R,命題p:x∈[-2,-1],x2-a≥0,命題q:.
(1)若命題p為真命題,求實數a的取值范圍;
(2)若命題“p∨q”為真命題,命題“p∧q”為假命題,求實數a的取值范圍.
【答案】(1);(2)
【解析】
(1)令f(x)=x2-a,可將問題轉化為“當時,
”,故求出
即可.(2)根據“p∨q”為真命題,命題“p∧q”為假命題可得p與q一真一假,然后分類討論可得所求的結果.
(1)令,
根據題意,“命題p為真命題”等價于“當時,
”.
∵,
∴,
解得.
∴實數的取值范圍為
.
(2)由(1)可知,當命題p為真命題時,實數滿足
.
當命題q為真命題,即方程有實數根時,則有Δ=4a2-4(2-a)≥0,
解得或
.
∵命題“p∨q”為真命題,命題“p∧q”為假命題,
∴命題p與q一真一假
①當命題p為真,命題q為假時,
得,解得
;
②當命題p為假,命題q為真時,
得,解得
.
綜上可得或
.
∴實數的取值范圍為
.
科目:高中數學 來源: 題型:
【題目】已知有一個三邊長分別為3,4,5的三角形.求下面兩只螞蟻與三角形三頂點的距離均超過1的概率.(1)一只螞蟻在三角形的邊上爬行(2)一只螞蟻在三角形所在區域內部爬行
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱臺ABO﹣A1B1O1中,側面AOO1A1與側面OBB1O1是全等的直角梯形,且OO1⊥OB,OO1⊥OA,平面AOO1A1⊥平面OBB1O1 , OB=3,O1B1=1,OO1= .
(1)證明:AB1⊥BO1;
(2)求直線AO1與平面AOB1所成的角的正切值;
(3)求二面角O﹣AB1﹣O1的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱臺ABO﹣A1B1O1中,側面AOO1A1與側面OBB1O1是全等的直角梯形,且OO1⊥OB,OO1⊥OA,平面AOO1A1⊥平面OBB1O1 , OB=3,O1B1=1,OO1= .
(1)證明:AB1⊥BO1;
(2)求直線AO1與平面AOB1所成的角的正切值;
(3)求二面角O﹣AB1﹣O1的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2﹣lnx(a∈R)
(1)當a=1時,求函數y=f(x)的單調區間;
(2)若x∈(0,1],|f(x)|≥1恒成立,求a的取值范圍;
(3)若a= ,證明:ex﹣1f(x)≥x.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左右焦點分別
,過
作垂直于
軸的直線
交橢圓于
兩點,滿足
.
(1)求橢圓的離心率.
(2)是橢圓
短軸的兩個端點,設點
是橢圓
上一點(異于橢圓
的頂點),直線
分別與
軸相交于
兩點,
為坐標原點,若
,求橢圓
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=e|lnx|(e為自然對數的底數).若x1≠x2且f(x1)=f(x2),則下列結論一定不成立的是( )
A.x2f(x1)>1
B.x2f(x1)=1
C.x2f(x1)<1
D.x2f(x1)<x1f(x2)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和Sn=﹣an﹣( )n﹣1+2(n∈N*),數列{bn}滿足bn=2nan .
(Ⅰ)求證數列{bn}是等差數列,并求數列{an}的通項公式;
(Ⅱ)設cn=log2 ,數列{
}的前n項和為Tn , 求滿足Tn
(n∈N*)的n的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com