【題目】已知曲線,為直線
上的動點,過
作
的兩條切線,切點分別為
.
(1)證明:直線過定點:
(2)若以為圓心的圓與直線
相切,且切點為線段
的中點,求該圓的方程.
【答案】(1)見詳解;(2) 或
.
【解析】
(1)可設,
,
然后求出A,B兩點處的切線方程,比如
:
,又因為
也有類似的形式,從而求出帶參數直線
方程,最后求出它所過的定點.
(2)由(1)得帶參數的直線方程和拋物線方程聯立,再通過
為線段
的中點,
得出
的值,從而求出
坐標和
的值,最后求出圓的方程.
(1)證明:設,
,則
。又因為
,所以
.則切線DA的斜率為
,故
,整理得
.設
,同理得
.
,
都滿足直線方程
.于是直線
過點
,而兩個不同的點確定一條直線,所以直線
方程為
.即
,當
時等式恒成立。所以直線
恒過定點
.
(2)由(1)得直線方程為
,和拋物線方程聯立得:
化簡得
.于是
,
設
為線段
的中點,則
由于,而
,
與向量
平行,所以
,
解得或
.
當時,
,
所求圓的方程為
;
當時,
或
,
所求圓的方程為
.
所以圓的方程為或
.
科目:高中數學 來源: 題型:
【題目】2019年,我國施行個人所得稅專項附加扣除辦法,涉及子女教育、繼續教育、大病醫療、住房貸款利息或者住房租金、贍養老人等六項專項附加扣除.某單位老、中、青員工分別有人,現采用分層抽樣的方法,從該單位上述員工中抽取
人調查專項附加扣除的享受情況.
(Ⅰ)應從老、中、青員工中分別抽取多少人?
(Ⅱ)抽取的25人中,享受至少兩項專項附加扣除的員工有6人,分別記為.享受情況如右表,其中“
”表示享受,“×”表示不享受.現從這6人中隨機抽取2人接受采訪.
員工 項目 | A | B | C | D | E | F |
子女教育 | ○ | ○ | × | ○ | × | ○ |
繼續教育 | × | × | ○ | × | ○ | ○ |
大病醫療 | × | × | × | ○ | × | × |
住房貸款利息 | ○ | ○ | × | × | ○ | ○ |
住房租金 | × | × | ○ | × | × | × |
贍養老人 | ○ | ○ | × | × | × | ○ |
(i)試用所給字母列舉出所有可能的抽取結果;
(ii)設為事件“抽取的2人享受的專項附加扣除至少有一項相同”,求事件
發生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓的離心率是
,一個頂點是
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設,
是橢圓
上異于點
的任意兩點,且
.試問:直線
是否恒過一定點?若是,求出該定點的坐標;若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,點P到兩點(0,),(0,
),的距離之和等于4,設點P的軌跡為C.
(1)求C的方程.
(2)設直線與C交于A,B兩點,求弦長|AB|,并判斷OA與OB是否垂直,若垂直,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知點為拋物線
,點
為焦點,過點
的直線交拋物線于
兩點,點
在拋物線上,使得
的重心
在
軸上,直線
交
軸于點
,且
在點
右側.記
的面積為
.
(1)求的值及拋物線的標準方程;
(2)求的最小值及此時點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:x2=2py經過點(2,1).
(Ⅰ)求拋物線C的方程及其準線方程;
(Ⅱ)設O為原點,過拋物線C的焦點作斜率不為0的直線l交拋物線C于兩點M,N,直線y=1分別交直線OM,ON于點A和點B.求證:以AB為直徑的圓經過y軸上的兩個定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐PABCD中,AD∥BC,平面PAC⊥平面ABCD,AB=AD=DC=1,
∠ABC=∠DCB=60,E是PC上一點.
(Ⅰ)證明:平面EAB⊥平面PAC;
(Ⅱ)若△PAC是正三角形,且E是PC中點,求三棱錐AEBC的體積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com