【題目】已知函數.
(Ⅰ)若,求
在
處的切線方程;
(Ⅱ)若對任意
均有
恒成立,求實數
的取值范圍;
(Ⅲ)求證:.
【答案】(Ⅰ);(Ⅱ)
;(Ⅲ)證明見解析.
【解析】
(Ⅰ)根據導數的幾何意義求得斜率后,利用點斜式即可得解;
(Ⅱ)先求導,根據、
分類討論函數單調性,結合
即可得解;
(Ⅲ)由(Ⅱ)知當時,
,轉化可得
,進而可得
,即可得證.
(Ⅰ)當時,
,則
,所以
,
所以切線方程為即
;
(Ⅱ)由題意,
令,則
,
,
當時,
,
在
時恒成立;
當時,
圖象的對稱軸為
,由
、
可得
在
時恒成立;
所以當時,函數
在
上單調遞減,所以
,符合題意;
當時,
,
,
圖象的對稱軸
,
所以存在,使得
,
則當時,
即
,函數
單調遞增,
此時,不合題意.
故所求實數的取值范圍為
;
(Ⅲ)證明:由(Ⅱ)知,當時,函數
在
單調遞減,
,
易知當時,
即
,
所以即
,所以
,
令,則
,
所以,得證.
科目:高中數學 來源: 題型:
【題目】下列說法中正確的是( )
A.若事件與事件
是互斥事件,則
B.若事件與事件
滿足條件:
,則事件A與事件
是對立事件
C.一個人打靶時連續射擊兩次,則事件“至少有一次中靶”與事件“至多有一次中靶”是對立事件
D.把紅、橙、黃3張紙牌隨機分給甲、乙、丙3人,每人分得1張,則事件“甲分得紅牌”與事件“乙分得紅牌”是互斥事件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學習小組通過對某商場一種品牌服裝銷售情況的調查發現:該服裝在過去的一個月內(以天計),日銷售量
(件)與時間x (天)的部分數據如下表所示,給出以下四種函數模型:①
,②
,③
④
.請你根據上表中的數據,從中選擇你認為最合適的一種函數來描述日銷售量
(件)與時間x(天)的變化關系,請將你選擇的函數序號填寫在橫線上__________.(不需要求出具體解析式)
x (天) | 10 | 20 | 25 | 30 |
| 110 | 120 | 125 | 120 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下表提供了某廠節能降耗技術改造后生產甲產品過程中記錄的產量(噸)與相應的生產能耗
(噸)標準煤的幾組對照數據
(1)請根據上表提供的數據,用最小二乘法求出關于
的線性回歸方程
;
(2)已知該廠技改前100噸甲產品的生產能耗為90噸標準煤.試根據(1)求出的線性回歸方程,預測生產100噸甲產品的生產能耗比技改前降低多少噸標準煤?
參考公式:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知各項是正數的數列的前n項和為
.
(1)若(nN*,n≥2),且
.
①求數列的通項公式;
②若對任意
恒成立,求實數
的取值范圍;
(2)數列是公比為q(q>0, q1)的等比數列,且{an}的前n項積為
.若存在正整數k,對任意nN*,使得
為定值,求首項
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y2=2px過點P(1,1).過點(0, )作直線l與拋物線C交于不同的兩點M,N,過點M作x軸的垂線分別與直線OP,ON交于點A,B,其中O為原點.
(Ⅰ)求拋物線C的方程,并求其焦點坐標和準線方程;
(Ⅱ)求證:A為線段BM的中點.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com