日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
精英家教網已知點P1(x0,y0)為雙曲線
x2
8b2
-
y2
b2
=1
(b為正常數)上任一點,F2為雙曲線的右焦點,過P1作右準線的垂線,垂足為A,連接F2A并延長交y軸于P2
(1)求線段P1P2的中點P的軌跡E的方程;
(2)設軌跡E與x軸交于B、D兩點,在E上任取一點Q(x1,y1)(y1≠0),直線QB,QD分別交y軸于M,N兩點.求證:以MN為直徑的圓過兩定點.
分析:(1)由已知得F2(3b,0),A(
8
3
b,y0)
,則直線F2A的方程為:y=
3y0
b
(x-3b)
,令x=0得P2(0,9y0),設P(x,y),則
x=
x0
2
y=
x0+9y0
2
=5y0
,由此能求出P的軌跡E的方程.
(2)在
x2
2b2
-
y2
25b2
=1
中,令y=0得x2=2b2,設B(-
2
b,0),D(
2
b,0)
,直線QB的方程為:y=
y1
x1+
2
b
(x+
2
b)
,直線QD的方程為:y=
y1
x1-
2
b
(x-
2
b)
,則M(0,
2
by1
x1+
2
),N(0,
-
2
by1
x1-
2
b
),由此能導出以MN為直徑的圓過兩定點(-5b,0),(5b,0).
解答:解:(1)由已知得F2(3b,0),A(
8
3
b,y0)
,則直線F2A的方程為:y=
3y0
b
(x-3b)

令x=0得y=9y0,即P2(0,9y0),
設P(x,y),則
x=
x0
2
y=
x0+9y0
2
=5y0
,即
x0=2x
y0=
y
5
代入
x02
8b2
-
y02
b2
=1
得:
4x2
8b2
-
y2
25b2
=1

即P的軌跡E的方程為
x2
2b2
-
y2
25b2
=1

(2)在
x2
2b2
-
y2
25b2
=1
中令y=0得x2=2b2,則不妨設B(-
2
b,0),D(
2
b,0)

于是直線QB的方程為:y=
y1
x1+
2
b
(x+
2
b)
,∴直線QD的方程為:y=
y1
x1-
2
b
(x-
2
b)

則M(0,
2
by1
x1+
2
),N(0,
-
2
by1
x1-
2
b
),
則以MN為直徑的圓的方程為:x2+(y-
2
by1
x1+
2
b
)•(y+
2
by1
x1-
2
b
)=0

令y=0得:x2=
2b2y12
x12-2b2
,而Q(x1,y1)在
x2
2b2
-
y2
25b2
=1
上,則x12-2b2=
2
25
y12

于是x=±5b,即以MN為直徑的圓過兩定點(-5b,0),(5b,0).
點評:本題考查軌跡方程的求法和求證以MN為直徑的圓過兩定點.解題時要要認真審題,熟練掌握圓錐曲線的性質,注意挖掘題設中的隱含條件,合理地進行等價轉化.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知點P1(x0,y0)為雙曲線
x2
3b2
-
y2
b2
=1(b>0,b為常數)
上任意一點,F2為雙曲線的右焦點,過P1作右準線的垂線,垂足為A,連接F2A并延長交y軸于點P2
(1)求線段P1P2的中點P的軌跡E的方程;
(2)是否存在過點F2的直線l,使直線l與(1)中軌跡在y軸右側交于R1、R2兩不同點,且滿足
OR1
OR2
=4b2
,(O為坐標原點),若存在,求直線l的方程;若不存在,請說明理由;
(3)設(1)中軌跡E與x軸交于B、D兩點,在E上任取一點Q(x1,y1)(y1≠0),直線QB、QD分別交y軸于M、N點,求證:以MN為直徑的圓恒過兩個定點.

查看答案和解析>>

科目:高中數學 來源:2009年高考數學理科(江西卷) 題型:044

已知點P1(x0y0)為雙曲線為正常數)上任一點F2為雙曲線的右焦點,過P1作右準線的垂線,垂足為A,連接F2A并延長交y軸于點P2

(1)求線段P1P2的中點P的軌跡F的方程;

(2)設軌跡Ex軸交于BD兩點,在E上任取一點Q(x1y1)(y0),直線QBQD分別交于y軸于MN兩點.求證:以MN為直徑的圓過兩定點.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知點P1(x0,y0)為雙曲線
x2
3b2
-
y2
b2
=1(b>0,b為常數)
上任意一點,F2為雙曲線的右焦點,過P1作右準線的垂線,垂足為A,連接F2A并延長交y軸于點P2
(1)求線段P1P2的中點P的軌跡E的方程;
(2)是否存在過點F2的直線l,使直線l與(1)中軌跡在y軸右側交于R1、R2兩不同點,且滿足
OR1
OR2
=4b2
,(O為坐標原點),若存在,求直線l的方程;若不存在,請說明理由;
(3)設(1)中軌跡E與x軸交于B、D兩點,在E上任取一點Q(x1,y1)(y1≠0),直線QB、QD分別交y軸于M、N點,求證:以MN為直徑的圓恒過兩個定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點P1(x0,y0)為雙曲線(b為正常數)上任一點,F2為雙曲線的右焦點,過P1作右準線的垂線,垂足為A,連接F2A并延長交y軸于點P2.

 (1)求線段P1P2的中點P的軌跡E的方程;

(2)設軌跡E與x軸交于B,D兩點,在E上任取一點Q(x1,y1)(y1≠0),直線QB,QD分別交y軸于M,N兩點.求證:以MN為直徑的圓過兩定點.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 天天干天天操天天爽 | 久热精品在线 | 日本不卡一区二区三区 | 天天爱夜夜操 | 夜夜嗨av一区二区三区网页 | 亚洲第一黄网 | 成人羞羞网站 | 亚洲国产精品久久久久久久 | 欧美色影院 | 黄色av大片| 黄色片www | 一二三四区在线观看 | 自由成熟xxxx色视频 | 久久精品一二三 | 超碰在线观看免费版 | 一区二区视频在线播放 | 欧美亚洲三级 | 日韩一区二区三区在线播放 | 91精品久久久久久 | 亚洲看片 | 51av视频 | 国产精品久久一区二区三区 | 日韩午夜在线观看 | 精品一区三区 | 欧美日韩精品一区 | 天堂免费av | 亚洲视频一区二区三区四区 | 国产日韩欧美一区二区 | 国产成人在线视频 | 欧美日韩中文字幕 | 亚洲欧美日本在线 | 国产精品一区二区三区四区五区 | 欧美日韩一二三 | 日韩免费精品视频 | 一级黄色录像片 | 日本免费毛片 | 亚洲精品一区二区三区在线 | 久久精品一区二区三区四区 | 一级黄色av| 91免费看| 久久久久久久成人 |