【題目】已知等邊三角形的邊長為
,
為
邊的中點,沿
將
折成直二面角
,則三棱錐
的外接球的表面積為_____
【答案】
【解析】
先證明AD⊥平面BCD,利用二面角的定義得知∠BDC=90°,利用勾股定理可得出△BCD的外接圓直徑為BC,設R為三棱錐A﹣BCD的外接球的半徑,得 ,再利用球體表面積公式可得出答案.
如圖所示,
折疊前,由于△ABC時等邊三角形,D為BC的中點,則AD⊥BC,
折疊后,則有AD⊥CD,AD⊥BD,∵BD∩CD=D,∴AD⊥平面BCD,
∵二面角B﹣AD﹣C為直二面角,∵AD⊥BD,AD⊥CD,則二面角B﹣AD﹣C的平面角為∠BDC=90°,
且 ,
Rt△BCD的外接圓直徑為,
所以,三棱錐A﹣BCD的外接球半徑為,
因此,三棱錐A﹣BCD的外接球的表面積為4πR2=80π.
故答案為:80π
科目:高中數學 來源: 題型:
【題目】以下5條表述中,橫線上填A代表“充分非必要條件”,填B代表“必要非充分條件”,填C代表“充要條件”,填D代表“既非充分也非必要條件”,請將相應的字母填入下列橫線上.
(1)若,則“
是
與
的等比中項”是“
”的_______.
(2)“數列為常數列”是“數列
既是等差數列又是等比數列”的_______.
(3)若是等比數列,則“
”是“
為遞減數列”的_______.
(4)若是公比為
的等比數列,則“
”是“
是遞減數列”的_______.
(5)記數列的前
項和為
,則“數列
為遞增數列”是“數列
的各項均為大于零”的_______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2013年華人數學家張益唐證明了孿生素數猜想的一個弱化形式。孿生素數猜想是希爾伯特在1900年提出的23個問題之一,可以這樣描述:存在無窮多個素數p,使得p+2是素數,素數對(p,p+2)稱為孿生素數.在不超過30的素數中,隨機選取兩個不同的數,其中能夠組成孿生素數的概率是
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
.
(1)當時,試討論方程
的解的個數;
(2)若曲線和
上分別存在點
,
,使得
是以原點
為直角頂點的直角三角形,且斜邊
的中點在
軸上,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在四棱柱中,側棱
底面
,
,
,
,
,
為棱
的中點.
(1)證明:;
(2)求二面角的正弦值;
(3)設點在線段
上,且直線
與平面
所成角的正弦值是
,求線段
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,點
滿足
,記點
的軌跡為
.斜率為
的直線
過點
,且與軌跡
相交于
兩點.
(1)求軌跡的方程;
(2)求斜率的取值范圍;
(3)在軸上是否存在定點
,使得無論直線
繞點
怎樣轉動,總有
成立?如果存在,求出定點
;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代著名的周髀算經
中提到:凡八節二十四氣,氣損益九寸九分六分分之一;冬至晷
長一丈三尺五寸,夏至晷長一尺六寸
意思是:一年有二十四個節氣,每相鄰兩個節氣之間的日影長度差為
分;且“冬至”時日影長度最大,為1350分;“夏至”時日影長度最小,為160分
則“立春”時日影長度為
A. 分B.
分C.
分D.
分
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com