【題目】為響應綠色出行,某市在推出“共享單車”后,又推出“新能源分時租賃汽車”.其中一款新能源分時租賃汽車,每次租車收費的標準由兩部分組成:①根據行駛里程數按1元/公里計費;②行駛時間不超過分時,按
元/分計費;超過
分時,超出部分按
元/分計費.已知王先生家離上班地點15公里,每天租用該款汽車上、下班各一次.由于堵車、紅綠燈等因素,每次路上開車花費的時間
(分)是一個隨機變量.現統計了50次路上開車花費時間,在各時間段內的頻數分布情況如下表所示:
時間 | ||||
頻數 | 2 | 18 | 20 | 10 |
將各時間段發生的頻率視為概率,每次路上開車花費的時間視為用車時間,范圍為分.
(1)寫出王先生一次租車費用(元)與用車時間
(分)的函數關系式;
(2)若王先生一次開車時間不超過40分為“路段暢通”,設表示3次租用新能源分時租賃汽車中“路段暢通”的次數,求
的分布列和期望;
(3)若公司每月給1000元的車補,請估計王先生每月(按22天計算)的車補是否足夠上、下班租用新能源分時租賃汽車?并說明理由.(同一時段,用該區間的中點值作代表)
科目:高中數學 來源: 題型:
【題目】下列說法:①對于獨立性檢驗,的值越大,說明兩事件相關程度越大;②以模型
去擬合一組數據時,為了求出回歸方程,設
,將其變換后得到線性方程
,則
,
的值分別是
和
;③根據具有線性相關關系的兩個變量的統計數據所得的回歸直線方程
中,
,
,
,則
;④通過回歸直線
及回歸系數
,可以精確反映變量的取值和變化趨勢,其中正確的個數是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某單位甲、乙、丙三個部門共有員工60人,為調查他們的睡眠情況,通過分層抽樣獲得部分員工每天睡眠的時間,數據如下表(單位:小時)
甲部門 | 6 | 7 | 8 | |||
乙部門 | 5.5 | 6 | 6.5 | 7 | 7.5 | 8 |
丙部門 | 5 | 5.5 | 6 | 6.5 | 7 | 8.5 |
(1)求該單位乙部門的員工人數?
(2)從甲部門和乙部門抽出的員工中,各隨機選取一人,甲部門選出的員工記為A,乙部門選出的員工記為B,假設所有員工睡眠的時間相互獨立,求A的睡眠時間不少于B的睡眠時間的概率;
(3)若將每天睡眠時間不少于7小時視為睡眠充足,現從丙部門抽出的員工中隨機抽取3人做進一步的身體檢查.用X表示抽取的3人中睡眠充足的員工人數,求隨機變量X的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱中,底面ABC為正三角形,
底面ABC,
,點
在線段
上,平面
平面
.
(1)請指出點的位置,并給出證明;
(2)若,求
與平面ABE夾角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知中,角
、
、
所對的邊分別是
、
、
,且
,
,有以下四個命題:①滿足條件的
不可能是直角三角形;②當
時,
的周長為15;③當
時,若為
的內心,則
的面積為
;④
的面積的最大值為40.其中正確命題有__________(填寫出所有正確命題的序號).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C的參數方程為(
為參數),以原點為極點,x軸正半軸為極軸建立極坐標系,點
在直線l:
上.
(1)求曲線C和直線l的直角坐標方程;
(2)若直線l與曲線C的相交于點A、B,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校組織由5名學生參加的演講比賽,采用抽簽法決定演講順序,在“學生和
都不是第一個出場,
不是最后一個出場”的前提下,學生
第一個出場的概率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,點
在橢圓
:
上.若點
,
,且
.
(1)求橢圓的離心率;
(2)設橢圓的焦距為4,
,
是橢圓
上不同的兩點,線段
的垂直平分線為直線
,且直線
不與
軸重合.
①若點,直線
過點
,求直線
的方程;
② 若直線過點
,且與
軸的交點為
,求
點橫坐標的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在△ABC中,D是BC邊上的一點,且AB=14,BD=6,∠ADC=,
.
(Ⅰ)求sin∠DAC;
(Ⅱ)求AD的長和△ABC的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com