如圖,已知圓,經過橢圓
的右焦點F及上頂點B,過圓外一點
傾斜角為
的直線
交橢圓于C,D兩點,
(1)求橢圓的方程;
(2)若右焦點F在以線段CD為直徑的圓E的外部,求m的取值范圍.
(1);(2)
解析試題分析:(1)因為右焦點和上頂點
在圓
上,代入圓的方程,得
,
,進而求得
,從而確定橢圓的方程;(1)涉及直線和圓錐曲線的位置關系問題,往往會用到結合根與系數的關系,利用“設而不求”的技巧,確定參數的值或范圍.該題中,設直線
的方程
,并和橢圓方程聯立,得關于
的一元二次方程,并注意隱函條件
,設交點
,
,構造向量
,由題意得,
,得關于
的不等式,解不等式即得參數
的取值范圍.
試題解析:(1)∵圓G:經過點F、B.∴F(2,0),B(0,
),∴
,
.∴
.故橢圓的方程為
.
(2)設直線的方程為
.
由消去
得
.
設,
,則
,
, 7分
∴.
∵,
,
∴=
=
.
∵點F在圓G的外部,∴,
即,解得
或
.由△=
,解得
.又
,
,∴
.
考點:1、橢圓的標準方程;2、直線和橢圓的位置關系;3、點和圓的位置關系.
科目:高中數學 來源: 題型:解答題
如圖,已知焦點在軸上的橢圓
經過點
,直線
交橢圓于不同的兩點.
(1)求該橢圓的標準方程;
(2)求實數的取值范圍;
(3)是否存在實數,使△
是以
為直角的直角三角形,若存在,求出
的值,若不存,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線D的頂點是橢圓C:=1的中心,焦點與該橢圓的右焦點重合.
(1)求拋物線D的方程;
(2)過橢圓C右頂點A的直線l交拋物線D于M、N兩點.
①若直線l的斜率為1,求MN的長;
②是否存在垂直于x軸的直線m被以MA為直徑的圓E所截得的弦長為定值?如果存在,求出m的方程;如果不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,直線l1和l2相交于點M,l1⊥l2,點N∈l1,以A、B為端點的曲線段C上任一點到l2的距離與到點N的距離相等.若△AMN為銳角三角形,|AM|=,|AN|=3,且|NB|=6,建立適當的坐標系,求曲線段C的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知,直線
,
為平面上的動點,過點
作
的垂線,垂足為點
,且
.
(1)求動點的軌跡曲線
的方程;
(2)設動直線與曲線
相切于點
,且與直線
相交于點
,試探究:在坐標平面內是否存在一個定點
,使得以
為直徑的圓恒過此定點
?若存在,求出定點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設A、B分別為橢圓=1(a>b>0)的左、右頂點,橢圓長半軸的長等于焦距,且直線x=4是它的右準線.
(1)求橢圓的方程;
(2)設P為橢圓右準線上不同于點(4,0)的任意一點,若直線BP與橢圓相交于兩點B、N,求證:∠NAP為銳角.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓=1(a>b>0)的離心率e=
,連結橢圓的四個頂點得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設直線l與橢圓相交于不同的兩點A,B.已知點A的坐標為(-a,0).若|AB|=,求直線l的傾斜角.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知A,B分別是橢圓C1:+
=1的左、右頂點,P是橢圓上異于A,B的任意一點,Q是雙曲線C2:
-
=1上異于A,B的任意一點,a>b>0.
(1)若P(,
),Q(
,1),求橢圓C1的方程;
(2)記直線AP,BP,AQ,BQ的斜率分別是k1,k2,k3,k4,求證:k1·k2+k3·k4為定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com