【題目】已知偶函數滿足:當
時,
,
,當
時,
.
()求當
時,
的表達式.
()若直線
與函數
的圖象恰好有兩個公共點,求實數
的取值范圍.
()試討論當實數
,
滿足什么條件時,函數
有
個零點且這
個零點從小到大依次成等差數列.
科目:高中數學 來源: 題型:
【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c,已知cos2B+cosB=1-cosAcosC.
(1)求證:a,b,c成等比數列;
(2)若b=2,求△ABC的面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2016年一交警統計了某段路過往車輛的車速大小與發生的交通事故次數,得到如下表所示的數據:
車速 | |||||
事故次數 |
(1)請畫出上表數據的散點圖;
(2)請根據上表提供的數據,用最小二乘法求出關于
的線性回歸方程
;
(3)試根據(2)求出的線性回歸方程,預測2017年該路段路況及相關安全設施等不變的情況下,車速達到時,可能發生的交通事故次數.
(參考數據:)
[參考公式:]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題:實數
滿足
,其中
;命題
:方程
表示雙曲線.
(1)若,且
為真,求實數
的取值范圍;
(2)若是
的充分不必要條件,求實數
的取值范圍.
【答案】(1);(2)
.
【解析】試題分析:
先由命題解得
;命題
得
,
(1)當,得命題
,再由
為真,得
真且
真,即可求解
的取值范圍.
(2)由是
的充分不必要條件,則
是
的充分必要條件,根據則
,即可求解實數
的取值范圍.
試題解析:
命題:由題得
,又
,解得
;
命題:
,解得
.
(1)若,命題
為真時,
,
當為真,則
真且
真,
∴解得
的取值范圍是
.
(2)是
的充分不必要條件,則
是
的充分必要條件,
設,
,則
;
∴∴實數
的取值范圍是
.
【題型】解答題
【結束】
19
【題目】已知拋物線頂點在原點,焦點在軸上,又知此拋物線上一點
到焦點的距離為6.
(1)求此拋物線的方程;
(2)若此拋物線方程與直線相交于不同的兩點
、
,且
中點橫坐標為2,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列的前
項和為
,若數列
的各項按如下規律排列;
有如下運算結論:①
;②數列
是等比數列;③數列
的前
項和為
;④若存在正整數
,使得
,則
,
其中正確的結論是________(將你認為正確的結論序號都填上)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數.
(1)求函數的最大值;
(2)對于任意,且
,是否存在實數
,使
恒
成立,若存在求出的范圍,若不存在,說明理由;
(3)若正項數列滿足
,且數列
的前
項和為
,試判斷
與
的大小,并加以證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x﹣a|+|x+5﹣a|
(1)若不等式f(x)﹣|x﹣a|≤2的解集為[﹣5,﹣1],求實數a的值;
(2)若x0∈R,使得f(x0)<4m+m2 , 求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: (
>b>0)的左、右頂點分別為A1、A2,上、下頂點分別為B2、B1,O為坐標原點,四邊形A1B1A2B2的面積為4,且該四邊形內切圓的方程為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若M、N是橢圓C上的兩個不同的動點,直線OM、ON的斜率之積等于,試探求△OMN的面積是否為定值,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com