【題目】某省電視臺為了解該省衛視一檔成語類節目的收視情況,抽查東西兩部各5個城市,得到觀看該節目的人數(單位:千人)如下莖葉圖所示,其中一個數字被污損.
(I)求東部觀眾平均人數超過西部觀眾平均人數的概率.
(II)節目的播出極大激發了觀眾隨機統計了4位觀眾的周均學習成語知識的的時間y (單位:小時)與年齡x(單位:歲),并制作了對照表(如下表所示):
由表中數據分析,x,y呈線性相關關系,試求線性回歸方程,并預測年齡為60歲觀眾周均學習成語知識的時間.
參考數據:線性回歸方程中的最小二乘估計分別是
.
【答案】(1)概率為;(2)
,預測60歲觀眾的學習成語的時間為5.25小時.
【解析】】
試題分析:(1)求出基本事件的個數,總的事件個數,讓滿足條件的事件個數除以總的事件個數,即可求出概率;(2)求出回歸系數,代入樣本中心,可得回歸方程,將x=60代入方程,即可預測年齡為60歲觀眾周均學習成語知識時間.
解析:
(1)設被污損的數字為a,則a有10種情況.
令88+89+90+91+92>83+83+97+90+a+99,則a<8,
東部各城市觀看該節目觀眾平均人數超過西部各城市觀看該節目觀眾平均人數,有8種情況,其概率為;
(2)由題意可知 =35,
=3.5,
所以
所以.
當時,
=5.25小時.
預測60歲觀眾的學習成語的時間為5.25小時。
科目:高中數學 來源: 題型:
【題目】隨著高等級公路的迅速發展,公路綠化受到高度重視,需要大量各種苗木.某苗圃培植場對100棵“天竺桂”的移栽成活量(單位:棵)與在前三個月內澆水次數
間的關系進行研究,根據以往的記錄,整理相關的數據信息如圖所示:
(1)結合圖中前4個矩形提供的數據,利用最小二乘法求關于
的回歸直線方程;
(2)用表示(1)中所求的回歸直線方程得到的100棵“天竺桂”的移栽成活量的估計值,當圖中余下的矩形對應的數據組
的殘差的絕對值
,則回歸直線方程有參考價值,試問:(1)中所得到的回歸直線方程有參考價值嗎?
(3)預測100棵“天竺桂”移栽后全部成活時,在前三個月內澆水的最佳次數.
附:回歸直線方程為,其中
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解本市居民的生活成本,甲、乙、丙三名同學利用假期分別對三個社區進行了“家庭每月日常消費額”的調查.他們將調查所得到的數據分別繪制成頻率分布直方圖(如圖所示),記甲、乙、丙所調查數據的標準差分別為s1、s2、s3,則它們的大小關系為__________.(用“>”連接)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)將函數的圖像(縱坐標不變)橫坐標伸長為原來的
倍,再把整個圖像向左平移
個單位長度得到
的圖像.當
時,求函數
的值域;
(2)若函數在
內是減函數,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓(
)的左、右焦點分別為
、
,設點
,在
中,
,周長為
.
(1)求橢圓的方程;
(2)設不經過點的直線
與橢圓
相交于
、
兩點,若直線
與
的斜率之和為
,求證:直線
過定點,并求出該定點的坐標;
(3)記第(2)問所求的定點為,點
為橢圓
上的一個動點,試根據
面積
的不同取值范圍,討論
存在的個數,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是函數在區間
上的圖象,為了得到這個函數的圖象,只需將y=sinx的圖象
A. 向左平移個長度單位,再把所得各點的橫坐標變為原來的
,縱坐標不變
B. 向左平移至個長度單位,再把所得各點的橫坐標變為原來的2倍,縱坐標不變
C. 向左平移個長度單位,再把所得各點的橫坐標變為原來的
,縱坐標不變
D. 向左平移個長度單位,再把所得各點的橫坐標變為原來的2倍,縱坐標不變
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】抽查100袋洗衣粉,測得它們的重量如下(單位:g):
494 498 493 505 496 492 485 483 508
511 495 494 483 485 511 493 505 488
501 491 493 509 509 512 484 509 510
495 497 498 504 498 483 510 503 497
502 511 497 500 493 509 510 493 491
497 515 503 515 518 510 514 509 499
493 499 509 492 505 489 494 501 509
498 502 500 508 491 509 509 499 495
493 509 496 509 505 499 486 491 492
496 499 508 485 498 496 495 496 505
499 505 496 501 510 496 487 511 501
496
(1)列出樣本的頻率分布表:
(2)畫出頻率分布直方圖,頻率分布折線圖;
(3)估計重量在[494.5,506.5]g的頻率以及重量不足500g的頻率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,曲線
的參數方程為
(
為參數),將曲線
經過伸縮變換
后得到曲線
.在以原點為極點,
軸正半軸為極軸的極坐標系中,直線
的極坐標方程為
.
(1)說明曲線是哪一種曲線,并將曲線
的方程化為極坐標方程;
(2)已知點是曲線
上的任意一點,求點
到直線
的距離的最大值和最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com