日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知拋物線C:y2=4(x-1),橢圓C1的左焦點及左準線與拋物線C的焦點F和準線l分別重合.
(1)設B是橢圓C1短軸的一個端點,線段BF的中點為P,求點P的軌跡C2的方程;
(2)如果直線x+y=m與曲線C2相交于不同兩點M、N,求m的取值范圍.
(1)拋物線y2=4(x-1)焦點為F(2,0),準線l:x=0.設P(x,y),
∵P為BF中點,
∴B(2x-2,2y)(x>2,y≠0).設橢圓C1的長半軸、短半軸、半焦距分別為a、b、c,
則c=(2x-2)-2=2x-4,b2=(2y)2=4y2
∵(-c)-(-
a2
c
)=2,
a2-c2
c
=2,
即b2=2c.∴4y2=2(2x-4),
即y2=x-2(y≠0),此即C2的軌跡方程.
(2)由
x+y=m
y2=x-2
,y≠0,知y2+y-m+2=0,
令△=1-4(-m+2)>0,知m>
7
4

而當m=2時,直線x+y=2過點(2,0),這時它與曲線C2只有一個交點,
∴所求m的取值范圍是(
7
4
,2)∪(2,+∞).
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,已知拋物線C:y2=2px(p>0)的焦點為F,A是拋物線上橫坐標為4且位于x軸上方的點. A到拋物線準線的距離等于5,過A作AB垂直于y軸,垂足為B,OB的中點為M(O為坐標原點).
(Ⅰ)求拋物線C的方程;
(Ⅱ)過M作MN⊥FA,垂足為N,求點N的坐標;
(Ⅲ)以M為圓心,4為半徑作圓M,點P(m,0)是x軸上的一個動點,試討論直線AP與圓M的位置關系.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知拋物線C:y2=2px(p>0),F為拋物線C的焦點,A為拋物線C上的動點,過A作拋物線準線l的垂線,垂足為Q.
(1)若點P(0,4)與點F的連線恰好過點A,且∠PQF=90°,求拋物線方程;
(2)設點M(m,0)在x軸上,若要使∠MAF總為銳角,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知拋物線C:y2=2Px(p>0)上橫坐標為4的點到焦點的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設直線y=kx+b(k≠0)與拋物線C交于兩點A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),求證:a2=
16(1-kb)k2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知拋物線C:y2=4x,點M(m,0)在x軸的正半軸上,過M的直線l與C相交于A、B兩點,O為坐標原點.
(I)若m=1,且直線l的斜率為1,求以AB為直徑的圓的方程;
(II)問是否存在定點M,不論直線l繞點M如何轉動,使得
1
|AM|2
+
1
|BM|2
恒為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知拋物線C:y2=8x與點M(-2,2),過C的焦點,且斜率為k的直線與C交于A,B兩點,若
MA
MB
=0,則k=(  )

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: a级片久久 | www.桃色| 日韩欧美中文字幕在线观看 | 日韩一区精品 | 神马福利视频 | 国产欧美精品 | 99久久精品一区二区成人 | 国产综合久久 | av一区二区三区 | 香蕉网在线 | 国产午夜三级 | 色婷婷狠狠 | 免费福利片 | 日韩二区三区 | 中文在线永久免费观看 | 免费特级毛片 | 国产欧美日韩在线 | 成人免费av | 夜夜草av | 中文字幕久久久 | 欧美精品在线观看 | 亚洲视频在线播放 | 黄色av免费观看 | 国产午夜精品久久久久久久 | 亚洲国产成人精品女人久久久 | 久久99深爱久久99精品 | 国产伦精品一区二区三区照片 | 狠狠干夜夜| 亚洲综合激情 | 我要看一级片 | аⅴ资源新版在线天堂 | 蜜桃色一区二区三区 | 日韩福利视频 | 午夜视频免费 | 久久精品伊人 | 亚洲天堂色 | 色福利网 | 午夜激情小视频 | 久久久久久久影院 | 亚洲国产中文字幕 | 免费国产一区二区 |