【題目】已知等腰三角形△ABC的兩腰AB和AC所在直線的方程分別為和
是底邊BC上一點,求:
(1)底邊BC所在直線的方程;
(2)△ABC的面積.
科目:高中數學 來源: 題型:
【題目】出租車幾何學是由十九世紀的赫爾曼·閔可夫斯基所創立的.在出租車幾何學中,點還是形如的有序實數對,直線還是滿足
的所有
組成的圖形,角度大小的定義也和原來一樣.直角坐標系內任意兩點
,
,定義它們之間的一種“距離”:
;到兩點P.Q“距離”相等的點的軌跡稱為線段PQ的“垂直平分線”.已知點
、
、
,請解決以下問題:
(1)求線段上一點
到原點
的“距離”;
(2)寫出線段AB的“垂直平分線”的軌跡方程,并作出大致圖像;
(3)定義:若三角形三邊的“垂直平分線”交于一點,則該點稱為三角形的“外心”.試判斷 的“外心”是否存在,如果存在,求出“外心”;如果不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點與點
在直線
的兩側,給出以下結論:①
;②當
時,
有最小值,無最大值;③
;④當
且
時,
的取值范圍是
,正確的個數為( )
A.1個B.2個C.3個D.以上都不對
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,設是棱長為
的正方體的一個頂點,過從此頂點出發的三條棱的中點作截面,對正方體的所有頂點都如此操作,所得的各截面與正方體各面共同圍成一個多面體,則關于此多面體有以下結論:①有
個頂點;②有
條棱;③有
個面;④表面積為
;⑤體積為
.其中正確的結論是____________.(要求填上所有正確結論的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動圓P恒過定點,且與直線
相切.
(Ⅰ)求動圓P圓心的軌跡M的方程;
(Ⅱ)正方形ABCD中,一條邊AB在直線y=x+4上,另外兩點C、D在軌跡M上,求正方形的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在萬眾創新的大經濟背景下,某成都青年面包店推出一款新面包,每個面包的成本價為元,售價為
元,該款面包當天只出一爐(一爐至少
個,至多
個),當天如果沒有售完,剩余的面包以每個
元的價格處理掉,為了確定這一爐面包的個數,該店記錄了這款新面包最近
天的日需求量(單位:個),整理得下表:
日需求量 | |||||
頻數 |
(1)根據表中數據可知,頻數與日需求量
(單位:個)線性相關,求
關于
的線性回歸方程;
(2)以天記錄的各日需求量的頻率代替各日需求量的概率,若該店這款新面包出爐的個數為
,記當日這款新面包獲得的總利潤為
(單位:元).求
的分布列及其數學期望.
相關公式:,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
(
為常數,且
).
(1)若當時,函數
與
的圖象有且只要一個交點,試確定自然數
的值,使得
(參考數值
,
,
,
);
(2)當時,證明:
(其中
為自然對數的底數).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:x2+y2-2x-4y=0.
(1)求圓C關于直線x-y-1=0對稱的圓D的標準方程;
(2)過點P(4,-4)的直線l被圓C截得的弦長為8,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正三棱柱中,AB=3,
=4,M為
的中點,P是BC邊上的一點,且由點P沿棱柱側面經過棱
到M點的最短路線長為
,設這條最短路線與
的交點為N,求
(1)該三棱柱的側面展開圖的對角線長.
(2)PC和NC的長
(3)平面NMP與平面ABC所成二面角(銳角)的大小(用反三角函數表示)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com