日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

已知點A(0,
2
n
),B(0,-
2
n
),C(4+
2
n
,0)
,其中n的為正整數(shù).設Sn表示△ABC外接圓的面積,則
lim
n→∞
Sn
=
 
分析:由三角形的對稱性,先找出其外接圓圓心在X軸上,再求出半徑,進而求出面積及其極限值.
解答:解:由題意可知外接圓圓心在X軸上,可設為O(a,0),則OA=OC,即OA2=OC2
a2+(- 
2
n
)
2
[a-(4+
2
n
)]
2

解得a=
4n+4
2n+1

∴O為(
4n+4
2n+1
,0)

∴圓O的半徑為OA=4+
2
n
-
4n+4
2n+1
=
4n2+4n+2
n(2n+1)

∴其外接圓的面積Sn=π• [
4n2+4n+2
2n2+n
]2
π•[
4+
2
n
+
2
n2
2+
1
n
]2

lim
n→∞
Sn
=4π.
故答案是4π.
點評:本題的解答過程中,注意到先根據(jù)三角形的對稱性找出外接圓圓心坐標,再進一步求解.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(請注意求和符號:f(k)+f(k+1)+f(k+2)+…+f(n)=
n
i=k
f(i)
,其中k,n為正整數(shù)且k≤n)
已知常數(shù)a為正實數(shù),曲線Cn:y=
nx
在其上一點Pn(xnyn)處的切線Ln
總經(jīng)過定點(-a,0)(n∈N*
(1)求證:點列:P1,P2,…,Pn在同一直線上
(2)求證:ln(n+1)<
n
i=1
a
yi
<2
n
(n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設A(x1,y1),B(x2,y2)是函數(shù)f(x)=
1
2
+log2
x
1-x
的圖象上兩點,且
OM
=
1
2
(
OA
+
OB
)
,O為坐標原點,已知點M的橫坐標為
1
2

(Ⅰ)求證:點M的縱坐標為定值;
(Ⅱ)定義定義Sn=
n-1
i=1
f(
i
n
)=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求S2011
(Ⅲ)對于(Ⅱ)中的Sn,設an=
1
2Sn+1
(n∈N*)
.若對于任意n∈N*,不等式kan3-3an2+1>0恒成立,試求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•嘉定區(qū)一模)已知點A(1+
1
n
 , 0)
B(0 , 2+
2
n
)
C(2+
1
n
 , 3+
2
n
)
,其中n為正整數(shù),設Sn表示△ABC的面積,則
lim
n→∞
Sn
=
5
2
5
2

查看答案和解析>>

科目:高中數(shù)學 來源:上海 題型:填空題

已知點A(0,
2
n
),B(0,-
2
n
),C(4+
2
n
,0)
,其中n的為正整數(shù).設Sn表示△ABC外接圓的面積,則
lim
n→∞
Sn
=______.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩在线影视 | 国产精品久久久久久久久久妇女 | 最新免费av网站 | 天天视频成人 | 午夜视频网 | 91在线电影 | 草视频在线 | 99视频精品 | 欧美 日韩 中文字幕 | 成人免费观看在线视频 | 国产一区二区三区久久 | 午夜国产精品视频 | 日韩免费福利视频 | 成人日韩在线 | 日韩中文久久 | 久久99精品久久久久久久青青日本 | 国产不卡在线 | 一级黄色片欧美 | 欧美亚洲一区 | 91在线影院 | 久久叉 | 男人天堂亚洲天堂 | 午夜在线播放 | av在线免费观看网站 | 欧美极品一区二区 | 久久精品一区二区三区四区 | 亚洲国产精品视频 | 亚洲激情 欧美 | 日韩视频网站在线观看 | 亚洲精品一区国产精品 | 国产精品久久久久久久一区探花 | 亚洲第一av | 黄色视屏在线免费观看 | 亚洲欧美在线观看 | 麻豆精品一区二区 | 在线免费国产视频 | 国产国拍亚洲精品av | 久久久久中文 | 欧美色频| 日本一区二区三区四区视频 | 日本在线免费看 |