【題目】如圖:某快遞小哥從地出發(fā),沿小路
以平均時(shí)速20公里
小時(shí),送快件到
處,已知
(公里),
,
是等腰三角形,
.
(1) 試問,快遞小哥能否在50分鐘內(nèi)將快件送到處?
(2)快遞小哥出發(fā)15分鐘后,快遞公司發(fā)現(xiàn)快件有重大問題,由于通訊不暢,公司只能派車沿大路追趕,若汽車平均時(shí)速60公里
小時(shí),問,汽車能否先到達(dá)
處?
【答案】(1)不能(2)能
【解析】試題分析:(1)由題意結(jié)合圖形,根據(jù)正弦定理可得,,求得
的長,又
,可求出快遞小哥從
地到
地的路程
,再計(jì)算小哥到達(dá)
地的時(shí)間,從而問題可得解;
(2)由題意,可根據(jù)余弦定理分別算出與
的長,計(jì)算汽車行馳的路程,從而求出汽車到達(dá)
地所用的時(shí)間,計(jì)算其與步小哥所用時(shí)間相差是否有15分鐘,從而問題可得解.
試題解析:(1)(公里),
中,由
,得
(公里)
于是,由知,
快遞小哥不能在50分鐘內(nèi)將快件送到處.
(2)在中,由
,
得(公里),
在中,
,由
,
得(公里),-
由(分鐘)
知,汽車能先到達(dá)處.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
(1)求函數(shù)的極值;
(2)設(shè),對(duì)于任意
,總有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)
的直角坐標(biāo)為
,若直線
的極坐標(biāo)方程為
,曲線
的參數(shù)方程是
,(
為參數(shù)).
(1)求直線的直角坐標(biāo)方程和曲線
的普通方程;
(2)設(shè)直線與曲線
交于
兩點(diǎn),求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于定義域?yàn)?/span>的函數(shù)
,若存在區(qū)間
,同時(shí)滿足下列條件:①
在
上是單調(diào)的;②當(dāng)定義域是
時(shí),
的值域也是
,則稱
為該函數(shù)的“和諧區(qū)間”.下列函數(shù)存在“和諧區(qū)間”的是()
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),記
,是否存在整數(shù)
,使得關(guān)于
的不等式
有解?若存在,請(qǐng)求出
的最小值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|(x-3)(x+a)<0,a∈R},集合B={x∈Z|x2-3x-4<0}.
(1)若A∩B的子集個(gè)數(shù)為4,求a的范圍;
(2)若a∈Z,當(dāng)A∩B≠時(shí),求a的最小值,并求當(dāng)a取最小值時(shí)A∪B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>
,且對(duì)任意的
有
. 當(dāng)
時(shí),
,
.
(1)求并證明
的奇偶性;
(2)判斷的單調(diào)性并證明;
(3)求;若
對(duì)任意
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,圓
的參數(shù)方程為
(
為參數(shù)),圓
與圓
外切于原點(diǎn)
,且兩圓圓心的距離
,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系.
(1)求圓和圓
的極坐標(biāo)方程;
(2)過點(diǎn)的直線
與圓
異于點(diǎn)
的交點(diǎn)分別為點(diǎn)
,與圓
異于點(diǎn)
的交點(diǎn)分別為點(diǎn)
,且
,求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天津大學(xué)某學(xué)院欲安排4名畢業(yè)生到某外資企業(yè)的三個(gè)部門實(shí)習(xí),要求每個(gè)部門至少安排1人,其中甲大學(xué)生不能安排到
部門工作的方法有_______種(用數(shù)字作答).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com