日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

對數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分數(shù)列,其中△an=an+1-an(n∈N*);一般地,規(guī)定{△kan} 為數(shù)列{an}的k階差分數(shù)列,其中△kan=△k-1an+1-△k-1an(k∈N*,k≥2).已知數(shù)列{an}的通項公式an=n2+n(n∈N*),則以下結(jié)論正確的序號為
①④
①④

①△an=2n+2;       
②數(shù)列{△3an}既是等差數(shù)列,又是等比數(shù)列;
③數(shù)列{△an}的前n項之和為an=n2+n;   
④{△2an}的前2014項之和為4028.
分析:根據(jù)k階差分數(shù)列的定義,分別代入公式進入驗證即可.
解答:解:①∵△an=an+1-an(n∈N*),{△kan}為數(shù)列{an}的k階差分數(shù)列,an=n2+n.
∴△an=an+1-an =(n+1)2+(n+1)-(n2+n)=2n+2,故①正確.
②∵△2an=2(n+1)+2-(2n+2)=2,
∴{△2an}是首項為2,公差為0的等差數(shù)列,
∴對數(shù)列{△3an},△3an=2-2=0,故數(shù)列{△3an}是等差數(shù)列,但不是等比數(shù)列,故②不正確.
③數(shù)列{△an}的前n項之和為△a1+△a2+…+△an=a2-a1+a3-a2+…+an+1-an=an+1-a1=(n+1)2+(n+1)-(1+1)=n2+3n,故③不正確.
④△2an=2(n+1)+2-(2n+2)=2,
∴{△2an}是首項為2,公差為0的等差數(shù)列,{△2an}的前2014項之和為 2×2014=4028,故④正確.
故答案為:①④.
點評:點評:本小題以新定義為載體主要考查等差數(shù)列、等比數(shù)列的定義的基礎知識,考查觀察、猜想并進行證明的數(shù)學思想方法,還考查了把新的定義轉(zhuǎn)化為利用所學知識進行求解的能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

8、對數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分數(shù)列,其中△an=an+1-an(n∈N).對自然數(shù)k,規(guī)定{△kan}為{an}的k階差分數(shù)列,其中△kan=△k-1an+1-△k-1an=△(△k-1an).
(1)已知數(shù)列{an}的通項公式an=n2+n(n∈N),,試判斷{△an},{△2an}是否為等差或等比數(shù)列,為什么?
(2)若數(shù)列{an}首項a1=1,且滿足△2an-△an+1+an=-2n(n∈N),求數(shù)列{an}的通項公式.
(3)(理)對(2)中數(shù)列{an},是否存在等差數(shù)列{bn},使得b1Cn1+b2Cn2+…+bnCnn=an對一切自然n∈N都成立?若存在,求數(shù)列{bn}的通項公式;若不存在,則請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分數(shù)列,其中△an=an+1-an(n∈N*);一般地,規(guī)定{△kan}為數(shù)列{an}的k階差分數(shù)列,其中kan=k-1an+1-k-1an(k∈N*,k≥2).已知數(shù)列{an}的通項公式an=n2+n(n∈N*),則以下結(jié)論正確的序號為
①④
①④

①△an=2n+24;       
②數(shù)列{△3an}既是等差數(shù)列,又是等比數(shù)列;
③數(shù)列{△an}的前n項之和為an=n2+n;   
④{△2an}的前2014項之和為4028.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對數(shù)列{an},規(guī)定{Van}為數(shù)列{an}的一階差分數(shù)列,其中Van=an+1-an(n∈N*).對正整數(shù)k,規(guī)定{Vkan}為{an}的k階差分數(shù)列,其中Vkan=Vk-1an+1-Vk-1an=V(VK-1an)(規(guī)定V0an=an).
(Ⅰ)已知數(shù)列{an}的通項公式an=n2+n(n∈N*),是判斷{Van}是否為等差數(shù)列,并說明理由;
(Ⅱ)若數(shù)列{an}的首項a1=1,且滿足V2an-Van+1+an=-2n(n∈N*),求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•桂林一模)對數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分數(shù)列,其中△an=an+1-an(n∈N*).規(guī)定{△2an}為{an}的二階差分數(shù)列,其中△2an=△an+1-△an
(Ⅰ)已知數(shù)列{an}的通項公式an=n2+n(n∈N*),試判斷{△an},{△2an}是否為等差或等比數(shù)列,并說明理由;
(Ⅱ)若數(shù)列{an}首項a1=1,且滿足2an-△an+1+an=-2n(n∈N*),求數(shù)列{an}的通項公式.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 男人天堂视频在线观看 | 国产精品美女久久久久久久久久久 | 国产精品欧美综合 | 日韩欧在线 | 欧美午夜一区二区三区 | 欧美日韩一区二区视频在线观看 | 久久com| 午夜精品久久久久久久久久久久 | 在线天堂新版最新版在线8 久久亚洲欧美日韩精品专区 | 成年人在线观看 | 欧美激情综合五月色丁香小说 | 青草视频在线观看免费 | 久久福利 | 日日日操 | 久久三区| 国产福利一区二区三区四区 | 欧美日韩中文字幕 | 亚洲高清不卡视频 | 久久精品一区二区三区四区 | 欧美freesex交免费视频 | 午夜视频 | 久久国产精品免费一区二区三区 | 天堂在线视频 | 成人精品网站在线观看 | 欧美性一区二区 | 亚洲欧美一区二区三区在线 | 九九视频网 | 青青草国产成人av片免费 | 久久伊人av| 久久伦理中文字幕 | 99精品国产99久久久久久97 | 日韩在线欧美 | www日本com| 国产精品theporn| 亚洲精品乱码久久久久久 | 成人av播放| 香蕉视频91| 成人免费福利视频 | 在线看一级片 | 日日人人 | 中文字幕色婷婷在线视频 |