【題目】如圖,在平面直角坐標系xOy中,已知直線l:x-y-2=0,拋物線C:y2=2px(p>0).
(1)若直線l過拋物線C的焦點,求拋物線C的方程;
(2)已知拋物線C上存在關于直線l對稱的相異兩點P和Q.
①求證:線段PQ的中點坐標為(2-p , -p);
②求p的取值范圍.
【答案】
(1)
解: ,
與
軸的交點坐標為
即拋物線的焦點為 ,
(2)
解:① 設點 ,
則: ,即
,
又 關于直線
對稱,
即 ,
又 中點一定在直線
上
線段
上的中點坐標為
;
② 中點坐標為
即
,即關于
有兩個不等根
,
,
【解析】(1)求出拋物線的焦點坐標,然后求解拋物線方程.(2):①設點P(x1 , y1),Q(x2 , y2),通過拋物線方程,求解kPQ , 通過P,Q關于直線l對稱,點的kPQ=﹣1,推出 ,PQ的中點在直線l上,推出
=2﹣p,即可證明線段PQ的中點坐標為(2﹣p,﹣p);②利用線段PQ中點坐標(2﹣p,﹣p).推出
,得到關于y2+2py+4p2﹣4p=0,有兩個不相等的實數根,列出不等式即可求出p的范圍.
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,左頂點為
,過原點且斜率不為0的直線與橢圓交于
兩點,其中點
在第二象限,過點
作
軸的垂線交
于點
.
⑴求橢圓的標準方程;
⑵當直線的斜率為
時,求
的面積;
⑶試比較與
大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,以坐標原點O為圓心的單位圓與x軸正半軸相交于點A,點B,P在單位圓上,且
(1)求的值;
(2)設
,四邊形
的面積為
,
,求
的最值及此時
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】記U={1,2,…,100},對數列{an}(n∈N*)和U的子集T,若T=,定義ST=0;若T={t1 , t2 , …,tk},定義ST= +
+…+
.例如:T={1,3,66}時,ST=a1+a3+a66 . 現設{an}(n∈N*)是公比為3的等比數列,且當T={2,4}時,ST=30.
(1)求數列{an}的通項公式;
(2)對任意正整數k(1≤k≤100),若T{1,2,…,k},求證:ST<ak+1;
(3)設CU,DU,SC≥SD , 求證:SC+SC∩D≥2SD .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,平面AED⊥平面ABNCD,EF∥AB,AB=2,BC=EF=1,AE= ,∠BAD=60°,G為BC的中點.
(1)求證:FG∥平面BED;
(2)求證:平面BED⊥平面AED;
(3)求直線EF與平面BED所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓 1(a>
)的右焦點為F,右頂點為A,已知
,其中O為原點,e為橢圓的離心率.
(1)求橢圓的方程;
(2)設過點A的直線l與橢圓交于B(B不在x軸上),垂直于l的直線與l交于點M,與y軸交于點H,若BF⊥HF,且∠MOA=∠MAO,求直線l的斜率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com