【題目】選修4—5:不等式選講
已知 =
(
).
(Ⅰ)當 時,解不等式
.
(Ⅱ)若不等式 對
恒成立,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】某學校在一次第二課堂活動中,特意設置了過關智力游戲,游戲共五關.規定第一關沒過者沒獎勵,過n(n∈N*)關者獎勵2n﹣1件小獎品(獎品都一樣).如圖是小明在10次過關游戲中過關數的條形圖,以此頻率估計概率.
(Ⅰ)求小明在這十次游戲中所得獎品數的均值;
(Ⅱ)規定過三關者才能玩另一個高級別的游戲,估計小明一次游戲后能玩另一個游戲的概率;
(Ⅲ)已知小明在某四次游戲中所過關數為{2,2,3,4},小聰在某四次游戲中所過關數為{3,3,4,5},現從中各選一次游戲,求小明和小聰所得獎品總數超過10的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2016年巴西奧運會的周邊商品有80%左右為“中國制造”,所有的廠家都是經過層層篩選才能獲此殊榮.甲、乙兩廠生產同一產品,為了解甲、乙兩廠的產品質量,以確定這一產品最終的供貨商,采用分層抽樣的方法從甲、乙兩廠生產的產品共98件中分別抽取9件和5件,測量產品中的微量元素的含量(單位:毫克).下表是從乙廠抽取的5件產品的測量數據:
編號 | 1 | 2 | 3 | 4 | 5 |
x | 169 | 178 | 166 | 175 | 180 |
y | 75 | 80 | 77 | 70 | 81 |
(1)求乙廠生產的產品數量:
(2)當產品中的微量元素x、y滿足:x≥175,且y≥75時,該產品為優等品.用上述樣本數據估計乙廠生產的優等品的數量:
(3)從乙廠抽出的上述5件產品中,隨機抽取2件,求抽取的2件產品中優等品數的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知 是定義在
上的可導函數
的導數,對任意
,且
,且
,都有
,
,
,則下列結論錯誤的是( )
A. 的增區間為
B. 在
=3處取極小值,在
=-1處取極大值??
C. 有3個零點
D. 無最大值也無最小值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】經市場調查,某商品每噸的價格為x(1<x<14)萬元時,該商品的月供給量為y1噸,y1=ax+ a2﹣a(a>0):月需求量為y2噸,y2=﹣
x2﹣
x+1,當該商品的需求量大于供給量時,銷售量等于供給量:當該商品的需求量不大于供給量時,銷售量等于需求量,該商品的月銷售額等于月銷售量與價格的乘積.
(1)已知a= ,若某月該商品的價格為x=7,求商品在該月的銷售額(精確到1元);
(2)記需求量與供給量相等時的價格為均衡價格,若該商品的均衡價格不低于每噸6萬元,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設集合A={(x,y)|y=x2+2bx+1},B={(x,y)|y=2a(x+b)},且A∩B是單元素集合,若存在a<0,b<0使點P∈{(x,y)|(x﹣a)2+(y﹣b)2≤1},則點P所在的區域的面積為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a是常數,對任意實數x,不等式|x+1|﹣|2﹣x|≤a≤|x+1|+|2﹣x|都成立.
(Ⅰ)求a的值;
(Ⅱ)設m>n>0,求證:2m+ ≥2n+a.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設雙曲線C: ,F1 , F2為其左右兩個焦點.
(1)設O為坐標原點,M為雙曲線C右支上任意一點,求 的取值范圍;
(2)若動點P與雙曲線C的兩個焦點F1 , F2的距離之和為定值,且cos∠F1PF2的最小值為 ,求動點P的軌跡方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com