【題目】某花圃為提高某品種花苗質量,開展技術創新活動,在,
實驗地分別用甲、乙方法培訓該品種花苗.為觀測其生長情況,分別在實驗地隨機抽取各50株,對每株進行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80及以上的花苗為優質花苗.
(Ⅰ)求圖中的值;
(Ⅱ)用樣本估計總體,以頻率作為概率,若在,
兩塊試驗地隨機抽取3棵花苗,求所抽取的花苗中的優質花苗數的分布列和數學期望;
(Ⅲ)填寫下面的列聯表,并判斷是否有90%的把握認為優質花苗與培育方法有關.
優質花苗 | 非優質花苗 | 合計 | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合計 |
附:下面的臨界值表僅供參考.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | <>0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中
.)
【答案】(Ⅰ)(Ⅱ)見解析;(Ⅲ)見解析
【解析】
(I)根據頻率和為列方程,解方程求得
的值.(II)先求得優質花苗的頻率也即概率,利用二項分布計算公式計算出分布列,并求得數學期望.(III)填寫好
聯表,然后計算出
的值,由此判斷出有
的把握認為優質花苗與培育方法有關系.
(Ⅰ),解得
(Ⅱ)由(Ⅰ)與頻率分布直方圖,優質花苗的頻率為,即概率為0.6.設所抽取的花苗為優質花苗的顆數為
,則
,于是,
;
;
;
.
其分布列為:
0 | 1 | 2 | 3 | |
所以,所抽取的花苗為優質花苗的數學期望
(Ⅲ)結合(Ⅰ)與頻率分布直方圖,優質花苗的頻率為,則樣本種,優質花苗的顆數為60棵,列聯表如下表所示:
優質花苗 | 非優質花苗 | 合計 | |
甲培育法 | 20 | 30 | 50 |
乙培育法 | 40 | 10 | 50 |
合計 | 60 | 40 | 100 |
可得.
所以,有的把握認為優質花苗與培育方法有關系.
科目:高中數學 來源: 題型:
【題目】如圖所示,在等腰梯形中,
,
,
,點
為
的中點.將
沿
折起,使點
到達
的位置,得到如圖所示的四棱錐
,點
為棱
的中點.
(1)求證:平面
;
(2)若平面平面
,求三棱錐
的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左、右焦點分別是
、
,離心率
,過點
的直線交橢圓
于
、
兩點,
的周長為16.
(1)求橢圓的方程;
(2)已知為原點,圓
:
(
)與橢圓
交于
、
兩點,點
為橢圓
上一動點,若直線
、
與
軸分別交于
、
兩點,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】李明自主創業,在網上經營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價格依次為60元/盒、65元/盒、80元/盒、90元/盒.為增加銷量,李明對這四種水果進行促銷:一次購買水果的總價達到120元,顧客就少付x元.每筆訂單顧客網上支付成功后,李明會得到支付款的80%.
①當x=10時,顧客一次購買草莓和西瓜各1盒,需要支付__________元;
②在促銷活動中,為保證李明每筆訂單得到的金額均不低于促銷前總價的七折,則x的最大值為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某大學生在開學季準備銷售一種文具盒進行試創業,在一個開學季內,每售出盒該產品獲利潤
元,未售出的產品,每盒虧損
元.根據歷史資料,得到開學季市場需求量的頻率分布直方圖,如圖所示.該同學為這個開學季購進了
盒該產品,以
(單位:盒,
)表示這個開學季內的市場需求量,
(單位:元)表示這個開學季內經銷該產品的利潤.
(1)根據直方圖估計這個開學季內市場需求量的眾數和平均數;
(2)將表示為
的函數;
(3)根據直方圖估計利潤不少于
元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點
,
,
,
是橢圓上任意三點,
,
關于原點對稱且滿足
.
(1)求橢圓的方程.
(2)若斜率為的直線與圓:
相切,與橢圓
相交于不同的兩點
、
,求
時,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,半徑為2的切直線MN于點P,射線PK從PN出發繞點P逆時針方向旋轉到PM,旋轉過程中,PK交
于點Q,設
為x,弓形PmQ的面積為
,那么
的圖象大致是
A. B.
C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在四棱錐中,底面
是邊長為
的正方形,
是正三角形,CD平面PAD,E,F,G,O分別是PC,PD,BC,AD 的中點.
(Ⅰ)求證:PO平面;
(Ⅱ)求平面EFG與平面所成銳二面角的大小;
(Ⅲ)線段上是否存在點
,使得直線
與平面
所成角為
,若存在,求線段
的長度;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com