(14分)已知是以點(diǎn)
為圓心的圓
上的動(dòng)點(diǎn),定點(diǎn)
.點(diǎn)
在
上,點(diǎn)
在
上,且滿足
.動(dòng)點(diǎn)
的軌跡為曲線
.
(Ⅰ)求曲線的方程;
(Ⅱ)線段是曲線
的長(zhǎng)為
的動(dòng)弦,
為坐標(biāo)原點(diǎn),求
面積
的取值范圍.
解析:(Ⅰ)
∴為
的垂直平分線,∴
,
又 ………………………………3分
∴動(dòng)點(diǎn)的軌跡是以點(diǎn)
為焦點(diǎn)的長(zhǎng)軸為
的橢圓.
∴軌跡E的方程為………………………………………………………5分
(Ⅱ) 解法一∵線段的長(zhǎng)等于橢圓短軸的長(zhǎng),要使三點(diǎn)
能構(gòu)成三角形,則弦
不能與
軸垂直,故可設(shè)直線
的方程為
,
由,消去
,并整理,得
設(shè),
,則
,
…………………………………………8分
,
, ………………………………………………………11分
. ……………………………………12分
又點(diǎn)到直線
的距離
,
……………………………………………13分
,
. …………………………………………14分
解法二:∵線段的長(zhǎng)等于橢圓短軸的長(zhǎng),要使三點(diǎn)
能構(gòu)成三角形,則弦
不能與
軸垂直,故可設(shè)直線
的方程為
,
由,消去
,并整理,得
設(shè),
,則
,
…………………………………………8分
,
………………………………………………………11分
又點(diǎn)到直線
的距離
,
設(shè),則
,
. ……………………………………………………14分
(注:上述兩種解法用均值不等式求解可參照此標(biāo)準(zhǔn)給分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年山東卷文)(本小題滿分14分)
已知曲線所圍成的封閉圖形的面積為
,曲線
的內(nèi)切圓半徑為
.記
為以曲線
與坐標(biāo)軸的交點(diǎn)為頂點(diǎn)的橢圓.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)是過(guò)橢圓
中心的任意弦,
是線段
的垂直平分線.
是
上異于橢圓中心的點(diǎn).
(1)若(
為坐標(biāo)原點(diǎn)),當(dāng)點(diǎn)
在橢圓
上運(yùn)動(dòng)時(shí),求點(diǎn)
的軌跡方程;
(2)若是
與橢圓
的交點(diǎn),求
的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分14分)
已知橢圓過(guò)點(diǎn)
,且離心率為
.
(1)求橢圓的方程;
(2)為橢圓
的左右頂點(diǎn),點(diǎn)
是橢圓
上異于
的動(dòng)點(diǎn),直線
分別交直線
于
兩點(diǎn).
證明:以線段為直徑的圓恒過(guò)
軸上的定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省四會(huì)市高三第三次統(tǒng)測(cè)文科數(shù)學(xué) 題型:解答題
(本小題滿分14分)
已知橢圓以坐標(biāo)原點(diǎn)為中心,坐標(biāo)軸為對(duì)稱軸,且該橢圓以拋物線的焦點(diǎn)
為其一個(gè)焦點(diǎn),以雙曲線
的焦點(diǎn)
為頂點(diǎn)。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn),且C、D分別為橢圓的上頂點(diǎn)和右頂點(diǎn),點(diǎn)M是線段CD上的動(dòng)點(diǎn),求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省高三11月月考文科數(shù)學(xué)試卷 題型:解答題
(本小題滿分14分)已知橢圓以坐標(biāo)原點(diǎn)為中心,坐標(biāo)軸為對(duì)稱軸,且該橢圓以拋物線的焦點(diǎn)
為其一個(gè)焦點(diǎn),以雙曲線
的焦點(diǎn)
為頂點(diǎn)。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn),且
分別為橢圓的上頂點(diǎn)和右頂點(diǎn),點(diǎn)
是線段
上的動(dòng)點(diǎn),求
的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com